Патенты автора Марченков Артём Юрьевич (RU)

Изобретение относится к технологиям неразрушающего контроля, а именно измерительной эндоскопии, и может быть использовано для получения и анализа трехмерного пространственного распределения деформаций поверхности труднодоступных объектов. Заявленный способ получения трехмерного пространственного распределения деформаций поверхности труднодоступных объектов заключается в освещении исследуемой поверхности излучением, распространяющимся от дистального конца эндоскопического зонда, формировании из отраженного и рассеянного исследуемой поверхностью излучения последовательности изображений в заданные моменты времени на матричном приемнике. Перед проведением исследования поверхности проводят предварительную геометрическую калибровку стереоскопической оптической системы, используют эндоскопический зонд со встроенной стереоскопической оптической системой, расположенной на его дистальном конце, с помощью которой формируют и последовательно регистрируют пары изображений исследуемой поверхности, полученные с различных ракурсов, вычисляют на основе совместной обработки пар изображений трехмерное изображение поверхности в заданный момент времени и, обрабатывая последовательность таких пар изображений с использованием данных предварительной геометрической калибровки стереоскопической оптической системы, проводят измерение и анализ трехмерного пространственного распределения деформаций исследуемой поверхности. Технический результат - возможность выявления распределения деформаций поверхности труднодоступного объекта сложной формы. 1 ил.

Изобретение относится к способу электронно-лучевой сварки. Способ включает перемещение электронного луча со скоростью сварки Vсв и осцилляцию электронного луча в виде пилообразных колебаний вдоль стыка свариваемых деталей с формированием сварочной ванны и парогазового канала заданной глубины. В начале каждого периода осцилляции электронный луч направляют ортогонально плоскости свариваемых деталей. В течение периода осцилляции электронный луч перемещают в направлении, противоположном направлению сварки, с постоянной скоростью V > 2 Vсв. По достижении величины перемещения, равной амплитуде осцилляции А=0,5-2 диаметра парогазового канала, электронный луч импульсно перебрасывают в направлении сварки до восстановления ортогональной ориентации электронного луча относительно поверхности свариваемых деталей. В результате достигается снижение экономических издержек, расширение технологических возможностей и повышение качества сварных соединений при электронно-лучевой сварке деталей больших толщин. 5 ил.

Изобретение относится к области дефектоскопии методом вихревых токов. Техническим результатом является повышение производительности способа диагностики изделий. В заявленном способе, основанном на подаче в исследуемое изделие электромагнитного поля различных частот тока возбуждения ƒ с регистрацией сигнала-отклика на каждой из частот ƒ и вычислении распределения составляющих сигнала-отклика по толщине изделия, на его бездефектной зоне определяют значения напряжения U0, индуцируемого полем вихревых токов при различных частотах тока возбуждения ƒ, далее в контролируемой области изделия непрерывно регистрируют напряжения U, индуцируемые полем вихревых токов при различных частотах тока возбуждения ƒ и получают зависимости амплитуды вносимого напряжения |Uвн|=|U-U0| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| от частоты тока возбуждения, на основе которых делают вывод об отсутствии или наличии зон концентрации напряжений в исследуемой области изделия. 5 ил.

Изобретение относится к области измерений и может быть использовано для исследования теплофизических характеристик электроизоляционных материалов. Согласно предложенному способу определения температуры стеклования проводят серии испытаний вдавливанием индентора в поверхность испытуемого материала при плавно изменяющейся температуре. Вдавливание проводят шаровым индентором с регистрацией в процессе испытания диаграммы вдавливания в координатах «нагрузка - глубина отпечатка», с использованием которой рассчитывают значения твердости по Бринеллю НВt, для каждой из температур испытания. Строят график зависимости твердости по Бринеллю НВt, от температуры испытания. Аппроксимируют полученный график двумя прямыми линиями, соответствующими температурным интервалам до и после стеклования. Температуру стеклования определяют по точке пересечения полученных прямых линий на графике зависимости твердости НВt, от температуры. Технический результат – повышение производительности и точности определения температуры стеклования. 2 ил.

Изобретение относится к области измерений, в частности к исследованию характеристики трещиностойкости деталей и конструкций, и направлено на повышение производительности, информативности способа и расширение его области применения. Сущность: осуществляют вдавливание в поверхность испытуемого материала алмазной четырехгранной пирамиды с последующей полной разгрузкой, в процессе испытания непрерывно регистрируют диаграмму вдавливания в координатах «нагрузка - глубина отпечатка», а затем по первому перелому на линии нагружения диаграммы вдавливания измеряют нагрузку Fc и соответствующую ей глубину отпечатка tc, по которым рассчитывают удельную работу упругопластической деформации ωс, необходимую для образования первой трещины, как: где - абсолютная работа упругопластической деформации при достижении Fc и tc, - упругопластический объем отпечатка глубиной tc. Технический результат: повышение производительности, информативности способа и расширение его области применения. 1 ил.

Изобретение относится к области измерений и может быть использовано для исследования механических характеристик материалов деталей и конструкций. Сущность: осуществляют вдавливание индентора в деформированный материал изделия под нагрузкой F1, проводят дополнительно второе вдавливание в деформированный материал изделия под нагрузкой F2, причем F2>F1, а затем дважды вдавливают индентор в недеформированный материал изделия под этими же нагрузками. Все вдавливания осуществляют сферическим индентором. Определяют параметры деформационного упрочнения для деформированного и недеформированного материала, с учетом которых рассчитывают значения истинной предельной равномерной деформации для недеформированного и деформированного материала изделия, по разности которых определяют значение интенсивности деформаций в деформированном материале, а также рассчитывают значения истинного временного сопротивления для деформированного и недеформированного материала изделия, по разности которых определяют значение интенсивности напряжений в деформированном материале. Технический результат: снижение трудоемкости и материалоемкости, а также расширение функциональных возможностей способа.

Изобретение относится к области механических испытаний материалов и может быть предназначено для выявления неоднородности распределения механических свойств металла в сварном соединении

Изобретение относится к области измерений и, в частности, предназначено для использования при исследовании механических характеристик материалов

 


Наверх