Патенты автора Павлов Олег Вячеславович (RU)

Изобретение относится к способам оптического определения положения и ориентации объекта при помощи оптического устройства и определения угловых направлений на жестко закрепленные на объекте светоизлучающие или светоотражающие метки - реперы. Способ идентификации реперов применяется при решении задачи Р4Р в авиационных оптико-электронных системах позиционирования с единственной камерой. При этом реперные кластеры оптико-электронной системы позиционирования представляют собой тетраэдры с основанием в виде правильного треугольника. После выхода из ждущего режима работы системы позиционирования, при котором число наблюдаемых реперов кластера n<4, реперы зажигают попарно. Для этого 4 репера кластера разделяют на две пары: левый (Л) - правый (П) и верхний (В) - нижний (Н). Для идентификации реперы кластера включаются парами - сначала первая пара Л-П, потом вторая пара В-Н, а определение соответствия между номерами и пространственными координатами реперов и пиксельными координатами их проекций в плоскости изображения выполняется по определенным правилам с использованием однородных пиксельных координат центров проекций реперов, оцененных с субпиксельной точностью для кадров с изображениями первой и второй пар реперов кластера соответственно. Технический результат – повышение быстродействия оптического определения положения и ориентации объекта. 3 ил.

Изобретение относится к способам оптического определения положения и ориентации объекта при помощи оптического устройства и определения угловых направлений на жестко закрепленные на объекте светоизлучающие или светоотражающие метки-маркеры. Заявленный способ оценивания угловых и пространственных координат объекта с реперными излучателями выбирается адаптивно в зависимости от количества наблюдаемых реперов кластера, а также конфигурации проекций реперов в плоскости изображения камеры. При этом адаптация заключается в том, что в зависимости от количества наблюдаемых реперов кластера 2≤n≤4 и оценки геометрического фактора задача определения угловых и пространственных координат объекта решается либо с применением только оптических средств, либо с применением как оптических средств, так и вспомогательной инерциальной подсистемы позиционирования. Технический результат заключается в разработке алгоритма адаптивного выбора способа решения задачи позиционирования объекта с размещенными на нем минимум n=4 реперами с априорно известными в системе координат объекта координатами с помощью единственной камеры. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области калибровки видеокамер, работающих в составе системы технического зрения. Технический результат − получение высококонтрастного изображения тестового шаблона, наблюдаемого камерами видимого и инфракрасного диапазона для осуществления калибровки видеодатчиков многоспектральной системы технического зрения. Способ калибровки видеодатчиков многоспектральной системы технического зрения включает съемку тестового объекта с различных ракурсов, перевод кадров в цифровую форму, нахождение на снятых изображениях особых точек и оценку их координат с субпиксельной точностью, оценку матриц внутренних параметров камер, оценку векторов коэффициентов дисторсии объективов камер, оценку матриц внешних параметров, причем осуществляют одновременную калибровку камер видимого и инфракрасного диапазонов с пересекающимися полями зрения, при этом используют тестовый объект в виде подогреваемого теплопроводящего калибровочного шаблона с темными n-угольниками, причем после получения полутоновых изображений от разноспектральных камер при различных положениях тестового объекта изображения с инфракрасных камер инвертируют. 1 ил.

Изобретение относится к области обработки цифровых изображений и касается способа компенсации геометрического шума инфракрасных изображений от сенсоров с вертикальным расположением линеек фоточувствительных элементов. Способ заключается в том, что осуществляют прием потока излучения и выполняют вычитание из массива яркости пикселей входного изображения массива скомпенсированных постоянных составляющих сигналов с фоточувствительных элементов. Массив постоянных составляющих сигналов с фоточувствительных элементов получают в результате рекуррентного усреднения яркости пикселей совокупности кадров. При этом в каждом кадре случайным образом переставляют строки, оценивают дисперсию градиента яркости в рекуррентно усредненном кадре в направлении строк и сравнивают с ее предыдущим максимальным значением. Если данное значение превышено, выполняют запись в память рекуррентно усредненного кадра, разделяют его на низкочастотную и высокочастотную составляющие, сохраняют высокочастотную составляющую в памяти и вычитают ее из текущего кадра. Если значение не превышено, из текущего кадра вычитают ранее сохраненную высокочастотную составляющую. Технический результат заключается в формировании калибровочного кадра с равномерной яркостью вне зависимости от распределения яркости наблюдаемой сцены. 10 ил.

Изобретение относится к вычислительной технике для определения и приведения к заданным значениям параметров видеокамер. Техническим результатом является обеспечение возможности совмещения изображений камер видимого и инфракрасного диапазонов, не требующего механической юстировки. Способ совмещения цифровых изображений различных спектральных диапазонов основан на оценке матриц проективного преобразования по изображениям автоматически распознаваемых в различных спектральных диапазонах маркеров, конструктивно размещенных на тестовом объекте в одной плоскости. Причем пространственные координаты маркеров, лежащих в плоскости тестового объекта, являются априорно известными. При оценке матриц проективного преобразования изменяется только угловое и пространственное положение тестового объекта посредством его перемещения. При этом совмещение изображений достигается за счет проективных преобразований изображений с камер по матрицам гомографии, оцениваемым по результатам предварительной калибровки с контрастным в каждом из спектральных диапазонов тестовым шаблоном для каждой пары камер, одна из которых выбрана в качестве опорной.

Изобретение относится к области вычислительной техники и может быть использовано для определения и приведения к заданным значениям параметров видеокамер, работающих в составе системы технического зрения, состоящей из нескольких разноспектральных видеодатчиков видимого и инфракрасного (ИК) диапазонов длин волн с перекрывающимися полями зрения. Заявлен тестовый шаблон для калибровки видеодатчиков многоспектральной системы технического зрения, который содержит теплопроводящую пластину и электронагревательный элемент. На одной из сторон теплопроводящей пластины сформировано поле из чередующихся в шахматном порядке темных и светлых элементов. При этом теплопроводящая пластина выполнена из светлого материала с высокой теплопроводностью. Причем темные элементы на поверхности теплопроводящей пластины выполнены из тонкой полимерной пленки темного цвета в виде правильных многоугольников с определенными размерами, углы которых являются опорными точками тестового шаблона. Электронагревательный элемент, установленный с внутренней стороны теплопроводящей пластины и соразмерный ей, содержит терморегулятор. Технический результат - создание тестового шаблона для калибровки камер видимого и/или инфракрасного диапазонов, имеющего упрощенную конструкцию, малую толщину и малое время готовности к работе. 4 з.п. ф-лы, 7 ил.
Изобретение относится к области вычислительной техники и может быть использовано для определения и приведения к заданным значениям параметров видеокамер, работающих в составе системы технического зрения, состоящей из нескольких разноспектральных видеодатчиков видимого и инфракрасного (ИК) диапазонов длин волн с перекрывающимися полями зрения. Технический результат изобретения заключается в упрощении конструкции, повышении контрастности изображения тест-объекта для калибровки видеодатчиков многоспектральной системы технического зрения при малом времени готовности к работе. Результат достигается тем, что тест-объект для калибровки видеодатчиков многоспектральной системы технического зрения содержит теплопроводящую пластину и электронагревательный элемент, установленные в корпусе. Причем теплопроводящая пластина выполнена из светлого материала с высокой теплопроводностью. Корпус выполнен с возможностью нагнетания во внутреннюю полость воздуха посредством установленных на одной или нескольких его стенках приточных вентиляторов. При этом в теплопроводящей пластине и скрепленном с ней соразмерном электронагревательном элементе выполнены сквозные отверстия для выхода воздуха из внутренней полости корпуса. Отверстия расположены упорядоченно в рядах, через фиксированные расстояния, а их центры являются опорными точками тест-объекта для калибровки видеодатчиков многоспектральной системы технического зрения. 1 ил.

Изобретение относится к области цифровой обработки изображений. Технический результат - повышение качества изображения и снижение уровня шумов изображения. Способ улучшения цифровых цветных изображений состоит из операций: получают исходное RGB изображение, выполняют фильтрацию шумов RGB изображения, осуществляют коррекцию глобального контраста RGB изображения, извлекают из цветного изображения яркостную компоненту из RGB составляющих, корректируют изображение в канале яркости с использованием технологии Multi Scale Retinex (MSR), конвертируют результат коррекции изображения в цветовую систему RGB; при осуществлении коррекции изображения в операции MSR выполняют блочную фильтрацию, после чего производят рекурсивное определение минимума и максимума значений результата операции MSR с последующей нормализацией значений яркости всего изображения к заданному диапазону, осуществляют взвешенное суммирование значений яркости каждого пикселя контрастированного изображения и нормализованного изображения операции MSR, после конвертирования трехкомпонентной схемы с преобразованной яркостной компонентой обратно в RGB, корректируют значения яркости пикселей в каждом канале RGB без расчета средней яркости каждого канала RGB. 9 ил.

Изобретение относится к области цифровой обработки изображений

Изобретение относится к области цифровой обработки изображений и может быть использовано для улучшения цифрового цветного или полутонового изображения

Изобретение относится к области обработки изображений, в частности к способу комплексирования цифровых полутоновых изображений, полученных от двух каналов различного спектрального диапазона

 


Наверх