Патенты автора Астрелина Татьяна Алексеевна (RU)

Изобретение относится к области медицины, в частности к биомедицине, а именно к регенеративной медицине и трансплантологии, тканевой инженерии для получения бесклеточного матрикса амниотической мембраны для последующей реконструкции дефектов тканей вследствие термических, химических и радиационных ожогов, язв и др. Способ получения бесклеточного матрикса амниотической мембраны для последующей реконструкции дефектов тканей в качестве покрытия с сохранными структурными компонентами внеклеточного матрикса включает следующее: донорскую плаценту переносят в ламинарно-потоковый шкаф II класса биологической опасности, отделяют внутреннюю плодную амниотическую оболочку от хориона, при этом из одной плаценты выделяют примерно 300 см2 амниотической мембраны. Выделенные фрагменты амниона площадью 50 см2 тщательно отмывают от крови в фосфатно-солевом буферном растворе с добавлением 250 ЕД/мл пенициллина и 250 мкг/мл стрептомицина троекратно в течение суток, через каждые 3 часа проводят замену раствора. Затем выделенные фрагменты амниотической мембраны площадью 50 см2 подвергают детергентно-ферментативной децеллюляризации, используя при этом: (1) 0,5% дезоксихолат натрия + 0,5% TritonX100 - 24 ч, 400 об/мин; (2) 0,05% Трипсин-ЭДТА - 1 ч, 200 об/мин; (3) DMEM, 10% FBS, 1% пенициллин-стрептомицина - 24 ч, 400 об/мин; (4) 300 ЕД/мл ДНКазы I, 40 mM Tris-HCl, 10 mM MgCl2, 10 mM NaCl - 16 ч, 400 об/мин; (5) PBS, 1% пенициллина-стрептомицина - 48 ч, 400 об/мин. Далее матрикс анализируют на наличие/отсутствие ядер клеток или теней ядер, сохранность основных компонентов внеклеточного матрикса (коллаген, ламинин, фибронектин) и уровень остаточной геномной ДНК. Технический результат – получение бесклеточного матрикса амниотической мембраны, не вызывающего воспалительного фиброза и макрофагально-лимфоцитарной инфильтрации, с целью заживления пораженной поверхности за счет повышения репаративных и иммунных процессов, восстановления трофики, ремоделирования фиброзной соединительной ткани.

Изобретение относится к области биотехнологии, а именно к лечению пациентов с местными лучевыми поражениями. Способ включает забор у пациента жировой ткани в нижней трети передней брюшной стенки шприцевой липосакцией. Из полученного липоапирата путем ферментативной обработки, промывания и фильтрации выделяют стромально-васкулярную фракцию жировой ткани, состоящую из стромальных клеток (15-30%, из них: 3% составляют стволовые клетки и клетки-предшественники, - положительная экспрессия CD105, CD90, CD73), эндотелиальных клеток (10-20% - положительная экспрессия более CD31), клеток крови (5-15% - положительная экспрессия CD45), перицитов (3-5% - положительная экспрессия CD146), гемопоэтических стволовых клеток (<0,1% - положительная экспрессия CD34). Затем осуществляют введение суспензии жизнеспособных клеток стромально-васкулярной фракции жировой ткани по всей поверхности пораженной области в полученном количестве в объеме 4,5 мл. Изобретение позволяет обеспечить благоприятные условия для заживления пораженной поверхности, повышения ранозаживляющей активности репаративных и иммунных процессов, восстановления трофики, ремоделирования фиброзной и соединительной ткани и достойного качества жизни пациентов. 1 пр., 4 ил.

Группа изобретений относится к области медицины, а именно к инфекционным и внутренним болезням, и предназначена для лечения COVID-19. Применяют гексапептид формулы (I): H-Tyr-D-Ala-Gly-Phe-Leu-Arg-OH (I) или его фармацевтически приемлемую соль в лечении респираторного заболевания, связанного с интерлейкином-6, где респираторное заболевание представляет собой COVID-19, путем легочного введения млекопитающему, нуждающемуся в этом. Также для лечения респираторного заболевания, связанного с интерлейкином-6, где респираторное заболевание представляет собой COVID-19, применяют водную фармацевтическую композицию, содержащую указанный гексапептид или его фармацевтически приемлемую соль и фармацевтически приемлемое вспомогательное вещество, путем легочного введения млекопитающему, нуждающемуся в этом. Кроме того, способ лечения респираторного заболевания, связанного с интерлейкином-6, где респираторное заболевание представляет собой COVID-19, включает стадию легочного введения эффективного количества указанного гексапептида или его фармацевтически приемлемой соли млекопитающему, нуждающемуся в этом. Использование группы изобретений позволяет повысить эффективность предотвращения, уменьшения или устранения симптомов респираторного заболевания, связанного с IL-6, где респираторное заболевание представляет собой COVID-19. 3 н. и 6 з.п. ф-лы, 10 пр., 6 табл., 4 ил.

Изобретение относится к области фармакологии и медицины и предназначено для лечения коронавирусной инфекции COVID-19. Для лечения COVID-19 применяют гексапептид формулы H-Tyr-D-Ala-Gly-Phe-Leu-Arg-OH (I) или его фармацевтически приемлемую соль. Использование изобретения обеспечивает эффективное лечение симптомов COVID-19. 3 з.п. ф-лы, 1 ил., 2 табл., 3 пр.

Изобретение относится к области фармакологии и медицины и предназначено для профилактики пневмонии. Для профилактики пневмонии применяют лекарственное средство, содержащее гексапептид формулы H-Tyr-D-Ala-Gly-Phe-Leu-Arg-OH или его фармацевтически приемлемую соль. Использование изобретения обеспечивает предупреждение развития пневмонии и снижение риска неблагоприятных последствий развития пневмонии, включая снижение риска смертности от пневмонии. 1 з.п. ф-лы, 2 ил.. 4 табл., 5 пр.

Изобретение относится к области фармакологии и медицины и предназначено для лечения острого респираторного дистресс-синдрома (ОРДС). Способ лечения ОРДС включает введение эффективных количеств легочного сурфактанта и гексапептида формулы H-Tyr-D-Ala-Gly-Phe-Leu-Arg-OH (I) или его фармацевтически приемлемой соли в млекопитающего, нуждающегося в этом. Использование изобретения позволяет повысить эффективность лечения ОРДС за счет сочетанного применения легочного сурфактанта и гексапептида формулы (I), что синергически эффективно снижает риск смертность при ОРДС. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к биотехнологии, а именно к получению трансплантата для лечения лимбальной недостаточности. Способ включает механическую очистку аллогенной склеры, ее замачивание в 6% растворе перекиси водорода и выдерживание 4 часа (достигается разрушение тканевых пигментов, липидных структур и обеззараживание), затем промывают стерильной дистиллированной водой и замораживают при температуре -20°C 2 часа (что позволяет разрушить клеточные мембраны). Затем после дефростации замачивают в водном растворе гидроксида аммония 10% на 2 часа при температуре 40°C (что способствует вымыванию липидов, но не вызывает денатурацию коллагена). Далее отмывают стерильным физиологическим раствором, замачивают в 6% растворе перекиси водорода и выдерживают 6 часов. Далее промывают стерильным физиологическим раствором, разделяют на фрагменты шириной 2 мм и длиной 4 мм и вымачивают в физиологическом растворе в течение 20 минут. Фрагменты помещают в культуральные планшеты с 10 мл питательной среды DMEM/F12 с добавлением 15% эмбриональной сыворотки и добавляют 1 мл концентрированной клеточной суспензии ММСК и прогениторных клеток эпителия роговицы (0,5-0,6×106 клеток/мл) и инкубируют в течение 5 суток. 1 табл., 2 пр.
Изобретение относится к области медицины, в частности к биомедицине, и может быть использовано в органной трансплантации и тканевой инженерии для реконструкции дефектов мягких тканей. Способ получения децеллюляризированных кожных лоскутов включает использование перфузионного модуля, интегрируемого в биореактор Ebers Teb 500, собранного из двух резервуаров различного объема, соединенных между собой с помощью трубок и люэр-фиттингов. Лоскут, помещенный в перфузионный модуль, обрабатывается следующим образом: лоскут отмывают путем перфузии 250 мл PBS с добавлением антибиотиков в течение суток; затем кожный лоскут последовательно отмывают в растворах 0,5 М NaCl, 1M NaCl и стерильной очищенной воде. После отмывки кожный лоскут обрабатывают раствором 0,25% трипсин – ЭДТА на платформенном шекере в рабочем пространстве биореактора EBERS ТЕВ 500 или инкубатора при 37°С со скоростью 500-600 об/мин. Далее промывают лоскут последовательно в стерильной очищенной воде и 100% изопропиловом спирте. Затем помещают фиксированный лоскут в перфузионный модуль и проводят перфузию 250 мл свежего профильтрованного раствора 1% 4-(1,1,3,3-тетраметилбутил)фенил-полиэтиленгликоля (TritonX100) и 0,8% дезоксихолата натрия (NaDOC) в течение 45 часов, при этом по истечению 24 часов раствор заменяют на свежий и с целью отмывания от детергентов перфузионный модуль не разбирают, а наливают в осушенный резервуар для перфузата 200-250 мл стерильной воды с добавлением 0,3% азида натрия и 1% ампициллина натрия, перфузию проводят в течение 48 часов с тремя заменами в течение каждых суток. После остановки перфузии лоскут промывают 40% этиловым спиртом, затем снова перфузируют лоскут со скоростью 20 мл/мин в течение двух часов. После перфузии лоскут переносят в новую емкость, заполненную 125 мл 70% этанола на +4°С и хранят в течение суток, а затем лоскут консервируют в 200-250 мл 7,14% DMSO и 7,14% PVP в DMEM и хранят при температуре -80°С. Способ позволяет добиться полного удаления ядер во всех слоях кожи, включая ядра адипоцитов, удаления молекул, являющихся антигенными детерминантами, отсутствия экспрессии МНС-1. 1пр.

Изобретение относится к медицине, а именно к урологии. Выполняют удлинение дистального отдела уретры. При этом уретра удлиняется за счет пластики тубуляризированным графтом из децеллюляризированной артерии, обработанной стромально-васкулярной фракцией жировой ткани, обогащенной собственными тромбоцитами плазмы крови. Способ позволяет эффективно выполнить коррекцию гипермобильности и эктопии мочеиспускательного канала и минимизировать сроки реабилитации, улучшить непосредственные и отдаленные результаты оперативного лечения 1 пр.

Изобретение относится к медицине, а именно к гинекологии и дерматологии. У пациента под местной анестезией осуществляют забор жировой ткани в нижней трети передней брюшной стенки методом шприцевой липосакции. Выделяют стромально-васкулярную фракцию жировой ткани путем ферментативной обработки, промывания и фильтрации полученного липоаспирата с помощью центрифугирования. Осуществляют внутрикожное введение жизнеспособных клеток стромально-васкулярной фракции жировой ткани в очаги атрофии по всей поверхности пораженной области больших и малых половых губ в объеме 2 мл. Способ позволяет активизировать иммунные, репаративные процессы, восстановить трофику и пигментацию поврежденных тканей: кожных покровов и слизистых оболочек промежности, ремоделировать фиброзную и соединительную ткань, достигнуть удовлетворительного косметического и функционального результата, уменьшить зуд, улучшить психоэмоциональное состояние. 4 ил., 1 пр.

Группа изобретений относится к области биохимии. Предложено устройство для двухсторонней децеллюляризации сосудистых графтов различного диаметра и способ оптимизации работы указанного устройства (варианты). Устройство включает проточную вертикальную камеру с тремя резервуарами, систему индикации готовности графтов или аварийных ситуаций, трубки подвода и отвода среды, компоненты для вертикального и горизонтального закрепления графтов в верхнем и нижнем резервуарах. Верхний и нижний резервуары имеют по всем сторонам кроме основания порты для трубок подачи и отвода среды и для контрольно-измерительной аппаратуры, а промежуточный резервуар имеет один порт в крышке и до пяти портов в основании. Способ включает перемешивание жидкости в резервуарах, где устройство или съемное основание нижнего резервуара соединяют проволокой с орбитальным шейкером, либо устройство устанавливают на магнитную мешалку с якорем в нижнем резервуаре, либо магнитную мешалку устанавливают перпендикулярно устройству и используют для вертикальной и горизонтальной ротации закрепленного графта, либо трубку подвода устройства соединяют с выступом вала головки перистальтического насоса для контролируемой ротации графта. Изобретения обеспечивают высокую производительность процедуры тщательной отмывки сосудистых графтов от клеток. 5 н.п. ф-лы, 1 ил.

Изобретение относится к медицине, в частности к пластической хирургии, комбустиологии, и касается лечения пациентов с глубокими термическими ожогами. Способ включает использование клеток стромально-васкулярной фракции жировой ткани. Для этого после стабилизации общего состояния пациента и при достижении положительной динамики местного процесса в ране во время проведения плановых хирургических обработок ожоговых поверхностей проводят забор жировой ткани в нижней трети передней брюшной стенки шприцевой липосакцией. Из полученного липоапирата выделяют стромально-васкулярную фракцию жировой ткани путем ферментативной обработки. Непосредственно во время хирургической процедуры осуществляют введение суспензии жизнеспособных клеток стромально-васкулярной фракции жировой ткани в количестве 15×106 или 10×106 в объеме 2-4 мл суспензии в 10-15 точек вокруг каждой раневой поверхности. Способ обеспечивает регуляцию и активацию иммунных и репаративных процессов в дерме, полное восстановление поврежденной сосудистой сети и утраченных кожных покров без грубых рубцовых изменений, создавая в том числе благоприятные условия для приживления пересаженных кожных лоскутов. 2 пр., 3 ил.

Изобретение относится к области медицины, а именно к способу получения децеллюляризированных матриксов почек кролика или крыс. Способ получения децеллюляризированных матриксов почек кролика или крыс с помощью метода детергентно-ферментативной децеллюляризации с использованием высокопроизводительной системы перфузии, которая представлена модулем для децеллюляризации, образованным резервуарами для перфузируемого раствора и паренхиматозного органа, системой силиконовых трубок с внутренним диаметром '' и 1/8'', перистальтических трубок с тремя маркированными стопперами для подключения к картриджам насоса Ismatec и системой люэр-фиттингов, который в собранном виде подключается к проточному биореактору EBERS ТЕВ500 MasterUnit, после подключения модуля децеллюляризации к биореактору проводят последовательную перфузию почек растворами определенного состава. Вышеописанный способ позволяет сохранить структурную целостность компонентов экстрацеллюлярного матрикса, а также с содержанием сульфатированных гликозаминогликанов и растворимого коллагена, сопоставимыми с нативными органами, кроме того, полученные децеллюляризированные матриксы могут быть использованы для дальнейших этапов тканевой инженерии, в частности для последующих процедур криоконсервации, стерилизации и рецеллюляризации. 2 пр.

Изобретение относится к области криоконсервации биологического материала, в частности сосудистых аллотрансплантатов. Предлагаемый способ криоконсервации сосудистых аллотрансплантатов включает сверхбыстрое охлаждение аллотрансплантатов до температуры -80 С° и хранение при этой температуре, при этом аллотрансплантаты крепятся на стерильные силиконовые или пластиковые полые подложки с диаметром на 15% меньше внутреннего диаметра сосудов и предварительно охлаждаются до +4°С, а для криоконсервации в качестве хладагента и непроникающего криопротектора применяется полидиметилсилоксан (ПДМС) вязкостью в 1 сСт с температурой -80°С. Охлаждение и замораживание проходит со скоростью -10°С/сек путем погружения и перемещения в объеме ПДМС в течение 1 мин. Для индивидуальной упаковки аллотрансплантатов на подложках используется стерильная пробирка на 50 мл с отверстием на дне и портом в крышке и двух заслонках на концах подложки. Для упаковки 3-х аллотрансплантатов используется промежуточный пластиковый контейнер объемом в 50 мл, имеющий крышку с портом для вакуумизации и с тремя портами для подложек на дне, на одинаковом расстоянии друг от друга, который устанавливается в вертикальном положении в прозрачную емкость из полиакрила объемом в 1 л. Для упаковки 10-ти аллотрансплантатов используют два держателя со сквозными каналами для подложек в горизонтальном положении и прозрачными крышками для закрепления на эти держатели. Хранятся аллотрансплантаты в выбранной упаковке с покрытием ПДМС. Разогрев аллотрансплантатов осуществляют на подложках в объеме ПДМС вязкостью в 25 сСт с температурой +25°С за 5 мин. Для безопасной радиационной стерилизации каждая упаковка с аллотрансплантатами вакуумизируется. Предлагаемый способ криоконсервации донорских сосудистых аллотрансплантатов позволяет избежать образования экстрацеллюлярных кристаллов льда, применения криопротекторов, оказывающих цитотоксическое воздействие на трансплантат, исключить использование программных методов замораживания с применением жидкого азота и обеспечить оптимизацию их дальнейшего процессинга – радиационной стерилизации и децеллюляризации. 1 ил.
Изобретение относится к медицине, а именно к урологии при лечении болезни Пейрони. Удаляют бляшки в пределах здоровых тканей. Образовавшийся дефект белочной оболочки укрывают моделированным графтом из децеллюляризированной артерии. На окончательном этапе операции производят послойное ушивание раны. Способ препятствует рецидивированию заболевания. 1 пр.

Группа изобретений относится к медицине и касается способа криоконсервации стволовых клеток, включающего получение взвеси стволовых клеток и добавление к ней раствора криопротектора при постоянном перемешивании, с последующей криоконсервацией, где в качестве криопротектора во взвесь добавляют 50%-ный раствор ДМСО в реополиглюкине до конечной концентрации ДМСО 10% в получившейся суспензии. Группа изобретений также касается комбинированного криопротектора для криоконсервации стволовых клеток, содержащего 50%-ный раствор ДМСО в реополиглюкине. Группа изобретений обеспечивает создание криопротектора с более низкой молекулярной массой и более низкой концентрацией ДМСО для улучшения сохранности клеток после размораживания. 2 н.п. ф-лы, 1 пр., 5 табл.

 


Наверх