Патенты автора Сабиров Фан Сагирович (RU)

Изобретение относится к области станкостроения. Мотор-шпиндель содержит корпус, шпиндель, установленный в корпусе с возможностью вращения в подшипниковых опорах и имеющий установленный внутри него со стороны передней подшипниковой опоры механизм зажима оправки с инструментом, электродвигатель, ротор которого расположен на валу шпинделя, а статор - в корпусе, систему охлаждения статора и подшипниковых опор, выполненную с возможностью подключения к станции для подачи хладагента, вибродатчик, установленный в корпусе, и датчики температуры, установленные на подшипниковых опорах. При этом он снабжен дополнительным датчиком температуры, установленным на статоре, и цифровым управляющим устройством, а система охлаждения выполнена раздельной для статора и подшипниковых опор и снабжена регуляторами интенсивности охлаждения каждого из них. Вибродатчик выполнен с возможностью измерения вибрационного ускорения. Цифровое управляющее устройство соединены с датчиками температуры и вибродатчиком, а также со станцией для подачи хладагента и с регуляторами интенсивности охлаждения статора и подшипниковых опор. Использование изобретения позволяет повысить эффективность и ресурс работы мотор-шпинделя. 1 з.п. ф-лы, 3 ил., 1 табл.

Способ включает закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер. Для повышения точности диагностики в шпинделе закрепляют цилиндрическую заготовку с продольным пазом, затем осуществляют резание, при этом колебания измеряют динамометрами, установленными на инструментальном узле, и датчиком, установленным на шпиндельной бабке, направляют их сигналы в компьютер, с помощью которого регистрируют и анализируют ответную реакцию шпиндельной бабки на входное воздействие и определяют отношение эффективных амплитуд, взятых из ответного сигнала на шпиндельной бабке на участках записи вибраций, соответствующих началу резания после прохождения паза, и участках записи вибраций, соответствующих окончанию резания перед выходом в паз, причем моменты начала и окончания резания определяют по изменению сигнала колебаний с инструментального узла. 6 ил.

Изобретение относится к металлообработке. Технически достижимый результат - упрощение конструкции при одновременном достижении высоких динамических и точностных характеристик, а также уменьшение металлоемкости. Это достигается тем, что в станке для обработки сложных поверхностей высокоскоростным фрезерованием, содержащим станину, инструментальный шпиндель со шпиндельной головкой, салазки для перемещения шпинделя, станина выполнена Т-образной формы и состоит из двух частей, при этом на первой части станины оппозитно друг другу крепятся Т-образного профиля стойки, между которыми расположен инструментальный шпиндель, корпус которого шарнирно соединен с элементами механизма параллельной кинематики, представляющими собой шарнирно-рычажные звенья, которые обеспечивают перемещение инструментального шпинделя по двум координатам в вертикальной плоскости, за счет вертикальных перемещений салазок, охватывающих верхние полочки Т-образного профиля стоек, причем салазки по стойкам перемещаются за счет передачи винт-гайка, при этом шарнирно-рычажные звенья шарнирно связаны с салазками, а для предотвращения попадания стружки на элементы механизма параллельной кинематики на первой части станины, по ее периметру, закреплен кожух, выполненный в виде поверхности прямоугольного параллелепипеда, охватывающей пространство размещения стоек с инструментальным шпинделем, который содержит приводной электродвигатель и соосно расположенный с ним шпиндель для закрепления инструмента, например фрезы, а на второй части станины, расположенной в горизонтальной плоскости первой части станины и перпендикулярно ей, установлен суппорт для перемещения в горизонтальной плоскости стола, служащего для закрепления заготовки сложного обрабатываемого контура, при этом суппорт перемещается по направляющим, параллельным между собой и жестко закрепленным на другой части Т-образной формы станины, перпендикулярно вертикальной плоскости перемещения инструментального шпинделя, а на суппорте, перпендикулярно горизонтальной плоскости его перемещения и с возможностью поворота вокруг своей оси, установлен стол для закрепления заготовки. 11 ил.

Изобретение относится к металлообработке и может быть использовано для профилирования шлифовального круга алмазным стержневым правящим инструментом. Устройство содержит исполнительный механизм правящего инструмента с исполнительным узлом, на котором зафиксирован правящий инструмент с возможностью возвратно-поступательного перемещения по двум ортогональным осям X и Z относительно шлифовального круга, пространственно ориентированным на горизонтальной поверхности, и исполнительный механизм шлифовального круга с установленным на нем с возможностью вращения шлифовальным кругом. Исполнительный механизм правящего инструмента выполнен в виде системы из по меньшей мере трех взаимно перемещающихся относительно друг друга оснований. Исполнительный узел правящего инструмента установлен на верхнем из упомянутых оснований с возможностью вращения вокруг оси, ортогональной к последнему, и поворота вокруг оси Z. Исполнительный механизм шлифовального круга выполнен в виде шпинделя, установленного с возможностью возвратно-поступательного перемещения на вертикальной стойке и поворота и фиксации в двух ортогональных плоскостях. Упомянутые исполнительные механизмы программно организованы с обеспечением движения правящего инструмента по пространственной кривой. В результате повышается точность формы шлифовального круга. 2 ил.

Изобретение относится к области обработки резанием и может быть использовано при правке абразивного круга для затылования червячных фрез на станке с ЧПУ. Осуществляют позиционирование правящего инструмента в виде алмазной иглы или карандаша относительно абразивного круга для затылования червячных фрез и установку правящего инструмента на упомянутом станке в зоне затылуемой фрезы. Перемещают его относительно упомянутого вращающегося абразивного круга по заданной криволинейной траектории в несколько проходов. Перемещение правящего инструмента в каждом проходе осуществляют по траектории, идентичной форме кромки затылуемой фрезы. После каждого прохода осуществляют подачу правящего инструмента путем его поворота вокруг продольной оси z затылуемой фрезы на угол δ=0,1÷1,5° с последующим его перемещением относительно поверхности упомянутого абразивного круга одновременно на величину u параллельно оси z и на величину w перпендикулярно оси z. Величины u и w перемещений правящего инструмента принимают равными величинам перемещения затылуемой фрезы относительно упомянутого абразивного круга в процессе затылования, соответственно, вдоль продольной оси z фрезы и перпендикулярно ей за время ее поворота вокруг оси z на угол δ. В результате повышается точность формы профиля абразивного круга для затылования червячных фрез и расширяются технологические возможности использования фрез с оптимальной геометрией. 4 з.п. ф-лы, 6 ил., 6 пр.

Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков. Способ вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающийся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, отличающийся тем, что гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, а для создания импульсного силового воздействия применяют генератор, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик, а подаваемое на исследуемый объект усилие при точении резцом оправки измеряют с помощью пьезоэлектрического динамометра. Технически достижимым результатом является повышение точности измерений, а также расширение технологических возможностей при проведении диагностики упругой системы станка. 1 з.п. ф-лы, 5 ил.

Устройство содержит режущий инструмент и систему подачи смазочно-охлаждающей технологической среды в зону резания на переднюю поверхность режущего инструмента. Для снижения необходимых усилий резания и повышения динамической жесткости режущего инструмента, а также повышения чистоты обрабатываемой поверхности детали при высоких скоростях резания за счет изменения схемы процесса резания оно снабжено вибратором, выполненным с возможностью создания колебания в диапазоне частот от 1 кГц до 40 кГц в направлении нормали к передней поверхности режущего инструмента, штоком и дополнительной вибрирующей пластиной, поверхность которой выполнена в виде продолжения передней поверхности режущего инструмента, соединенной с вибратором. При этом дополнительная вибрирующая пластина расположена таким образом, что зона контакта стружки с передней поверхностью режущего инструмента захватывает её часть, причем шток с одной стороны связан с вибратором, а с другой - с дополнительной вибрирующей пластиной, воздействующей на подаваемую свободным поливом смазочно-охлаждающую технологическую среду. 1 ил.

Способ включает фиксацию на передней поверхности зуба фрезы 2 в ее торцовом сечении на расстоянии L от торца фрезы 2 прямолинейной упругой полоски, обеспечивающей продление поверхности переднего угла для его визуального восприятия. Фрезу устанавливают ортогонально плоскости стола 1 микроскопа так, чтобы визирная линия окуляра проходила через вершину зуба на торце фрезы и продольную ось фрезы. Объектив 3 микроскопа перемещают в вертикальной плоскости в направлении фрезы на расстояние L. Поворачивают стол 1 микроскопа или окуляр до совмещения визирной линии с продольной гранью полоски. Определяют угол поворота стола микроскопа или окуляра θ, а затем определяют передний угол γ по приведенной зависимости. Технический результат - упрощение и снижение трудоемкости измерения переднего угла, обеспечение возможности измерения переднего угла у фрез с диаметром более 3 мм и с любым числом зубьев, в том числе менее трех, с использованием инструментального микроскопа. 1 з.п. ф-лы, 5 ил.

Способ включает фиксацию на передней поверхности зуба инструмента 1 в его торцовом сечении на расстоянии L от вершины зуба инструмента 1 прямолинейной упругой полоски 3, обеспечивающей продление поверхности переднего угла для его визуального восприятия. Инструмент 1 устанавливают ортогонально плоскости стола 8 микроскопа так, чтобы визирная линия окуляра проходила через вершину зуба и через продольную ось инструмента. Объектив микроскопа перемещают в вертикальной плоскости в направлении инструмента 1 на упомянутое расстояние L с последующим поворотом стола 8 микроскопа или окуляра до совмещения визирной линии с продольной гранью полоски. Определяют угол Ө, а затем определяют передний угол γ по следующей зависимости: γ = (360/P)·L - Ө, где: L - расстояние от вершины зуба инструмента до полоски вдоль оси инструмента, мм; Ө - угол поворота стола микроскопа или окуляра, градус; Р - осевой шаг винтовой канавки, мм. Технический результат - упрощение и снижение трудоемкости измерения переднего угла в торцовом сечении осевых режущих инструментов (сверл, зенкеров, разверток, метчиков и др.) с диаметром более 3 мм, с любым числом зубьев, в том числе менее трех, с использованием инструментального микроскопа. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области металлообрабатывающей промышленности и может быть использовано для высокоскоростной обработки труднообрабатываемых материалов с повышенным качеством обрабатываемых поверхностей. Техническим результатом изобретения является снижение необходимых усилий резания и повышение динамической жесткости режущего инструмента, а также повышение чистоты обрабатываемой поверхности детали при высоких скоростях резания за счет изменения схемы процесса резания, в частности, за счет изменения организации процесса подачи смазочно-охлаждающей жидкости в зону резания и отвода снимаемой стружки. Это достигается посредством того, что в способе вибрационной обработки деталей резанием, заключающемся в обеспечении относительного перемещения обрабатываемой детали и режущего инструмента с одновременной подачей в зону резания на переднюю поверхность режущего инструмента смазочно-охлаждающей технологической среды (СОТС), подвергаемой вибрационному воздействию, вибрации сообщают дополнительной пластине, в диапазоне частот от 1 кГц до 40 кГц. Поверхность дополнительной пластины выполняют как продолжение передней поверхности режущей пластины, на которую подают СОТС, и по которой направляют сход стружки. СОТС и сходящую стружку подвергают вибрационному воздействию в указанном диапазоне частот. СОТС в зону резания подают свободным поливом на переднюю поверхность режущего инструмента.1 ил.

Способ включает установку шпинделя внутри корпуса шпиндельного узла станка и закрепление посредством фланца с возможностью вращения в передних и задних подшипниковых опорах. При этом в корпусе и во фланце выполняют каналы для охлаждения элементов шпиндельного узла. Для повышения ресурса работы дополнительно осуществляют контроль температуры с помощью датчиков температуры, которые устанавливают вблизи наружных колец подшипников, контроль уровня вибраций с помощью вибродатчика, который устанавливают в корпусе вблизи передней опоры шпинделя, и контроль осевого смещения шпинделя с помощью датчика, установленного на его переднем конце, по совокупности показаний которых осуществляют своевременное отключение электродвигателя при превышении допустимой нагрузки. 4 ил., 1 табл.

Группа изобретений относится к машиностроению, в частности к аэростатическим направляющим металлорежущих станков. Круговая аэростатическая направляющая для металлорежущих станков содержит микроканавки с подводящим воздух соплом, к которому подводится воздух под давлением. Сопло выполнено длиной 6 мм и диаметром 4 мм и запрессовано в отверстие, расположенное в теле планшайбы. Для опор, расположенных в вертикальной торцевой плоскости, зазор от базовой поверхности направляющих до торцевой поверхности сопла выбирается равным 0,1 мм, а диаметр центрального отверстия, выполненного в сопле, равным 0,22 мм. В торцевой поверхности сопла выполнена коническая фаска, а на боковой цилиндрической поверхности сопла выполнена круговая проточка. Для опор, расположенных в горизонтальной плоскости, зазор от базовой поверхности направляющей до торцевой поверхности сопла выполнен равным 0,55 мм, в торце сопла выполнена цилиндрическая фаска, а микроканавки расположены в торцевой поверхности сопла и выполнены глубиной 0,45 мм и шириной 0,4 мм. Обеспечивается повышение точности обработки, а также надежности и эффективности работы станка. 2 н.п. ф-лы., 3 ил.

Группа изобретений относится к машиностроению, в частности к аэростатическим направляющим металлорежущих станков. Круговая аэростатическая направляющая для металлорежущих станков содержит микроканавки с подводящим воздух соплом, к которому подводится воздух под давлением. Сопло выполнено длиной 6 мм и диаметром 4 мм и запрессовано в отверстие, расположенное в теле планшайбы. Для опор, расположенных в вертикальной торцевой плоскости, зазор от базовой поверхности направляющих до торцевой поверхности сопла выбирается равным 0,1 мм, а диаметр центрального отверстия, выполненного в сопле, равным 0,22 мм. В торцевой поверхности сопла выполнена коническая фаска, а на боковой цилиндрической поверхности сопла выполнена круговая проточка. Для опор, расположенных в горизонтальной плоскости, зазор от базовой поверхности направляющей до торцевой поверхности сопла выполнен равным 0,55 мм, в торце сопла выполнена цилиндрическая фаска, а микроканавки расположены в торцевой поверхности сопла и выполнены глубиной 0,45 мм и шириной 0,4 мм. Обеспечивается повышение точности обработки, а также надежности и эффективности работы станка. 2 н.п. ф-лы., 3 ил.

Группа изобретений относится к машиностроению, в частности к аэростатическим направляющим металлорежущих станков. Круговая аэростатическая направляющая для металлорежущих станков содержит микроканавки с подводящим воздух соплом, к которому подводится воздух под давлением. Сопло выполнено длиной 6 мм и диаметром 4 мм и запрессовано в отверстие, расположенное в теле планшайбы. Для опор, расположенных в вертикальной торцевой плоскости, зазор от базовой поверхности направляющих до торцевой поверхности сопла выбирается равным 0,1 мм, а диаметр центрального отверстия, выполненного в сопле, равным 0,22 мм. В торцевой поверхности сопла выполнена коническая фаска, а на боковой цилиндрической поверхности сопла выполнена круговая проточка. Для опор, расположенных в горизонтальной плоскости, зазор от базовой поверхности направляющей до торцевой поверхности сопла выполнен равным 0,55 мм, в торце сопла выполнена цилиндрическая фаска, а микроканавки расположены в торцевой поверхности сопла и выполнены глубиной 0,45 мм и шириной 0,4 мм. Обеспечивается повышение точности обработки, а также надежности и эффективности работы станка. 2 н.п. ф-лы., 3 ил.

Группа изобретений относится к машиностроению, в частности к аэростатическим направляющим металлорежущих станков. Круговая аэростатическая направляющая для металлорежущих станков содержит микроканавки с подводящим воздух соплом, к которому подводится воздух под давлением. Сопло выполнено длиной 6 мм и диаметром 4 мм и запрессовано в отверстие, расположенное в теле планшайбы. Для опор, расположенных в вертикальной торцевой плоскости, зазор от базовой поверхности направляющих до торцевой поверхности сопла выбирается равным 0,1 мм, а диаметр центрального отверстия, выполненного в сопле, равным 0,22 мм. В торцевой поверхности сопла выполнена коническая фаска, а на боковой цилиндрической поверхности сопла выполнена круговая проточка. Для опор, расположенных в горизонтальной плоскости, зазор от базовой поверхности направляющей до торцевой поверхности сопла выполнен равным 0,55 мм, в торце сопла выполнена цилиндрическая фаска, а микроканавки расположены в торцевой поверхности сопла и выполнены глубиной 0,45 мм и шириной 0,4 мм. Обеспечивается повышение точности обработки, а также надежности и эффективности работы станка. 2 н.п. ф-лы., 3 ил.

Группа изобретений относится к машиностроению, в частности к аэростатическим направляющим металлорежущих станков. Круговая аэростатическая направляющая для металлорежущих станков содержит микроканавки с подводящим воздух соплом, к которому подводится воздух под давлением. Сопло выполнено длиной 6 мм и диаметром 4 мм и запрессовано в отверстие, расположенное в теле планшайбы. Для опор, расположенных в вертикальной торцевой плоскости, зазор от базовой поверхности направляющих до торцевой поверхности сопла выбирается равным 0,1 мм, а диаметр центрального отверстия, выполненного в сопле, равным 0,22 мм. В торцевой поверхности сопла выполнена коническая фаска, а на боковой цилиндрической поверхности сопла выполнена круговая проточка. Для опор, расположенных в горизонтальной плоскости, зазор от базовой поверхности направляющей до торцевой поверхности сопла выполнен равным 0,55 мм, в торце сопла выполнена цилиндрическая фаска, а микроканавки расположены в торцевой поверхности сопла и выполнены глубиной 0,45 мм и шириной 0,4 мм. Обеспечивается повышение точности обработки, а также надежности и эффективности работы станка. 2 н.п. ф-лы., 3 ил.

Изобретение относится к испытательной технике и может быть использовано для вибрационных испытаний различных изделий

Изобретение относится к испытательной технике и может быть использовано для вибрационных испытаний различных изделий

Изобретение относится к области металлообрабатывающей промышленности и может быть использовано для обработки труднообрабатываемых материалов с повышенным требованием к качеству и точности обрабатываемых поверхностей

Изобретение относится к машиностроению и может быть использовано для виброизоляции технологического оборудования со смещенным центром масс, например станки токарной группы, ткацкие станки, платформы вентиляционных агрегатов и др

Изобретение относится к машиностроению

Изобретение относится к области машиностроения, а именно к механизмам преобразования движения

Изобретение относится к области машиностроения, а именно к механизмам преобразования движения

Изобретение относится к области машиностроения, а именно к опорам станков

Изобретение относится к области машиностроения, а именно к опорам скольжения

Изобретение относится к машиностроению и может быть использовано при изготовлении спиралей с прямолинейными концевыми участками

Изобретение относится к области машиностроения, а именно к шпиндельным узлам

Изобретение относится к противопожарной технике, а именно к оборудованию для объемного тушения пожаров

Изобретение относится к машиностроению
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх