Патенты автора Казаков Александр Викторович (RU)

Изобретение относится к области цифровой обработки радиолокационных сигналов и может быть использовано в радиолокационной станции (РЛС) для формирования достоверных оценок радиальных функционально связанных координат (ФСК) взаимного перемещения летательных аппаратов (ЛА) группы и подвижного объекта (ПО), а также распознавания варианта наведения ПО на один из ЛА группы. Достигаемый технический результат - повышение достоверности оценивания радиальных ФСК взаимного перемещения ЛА группы и ПО и распознавания варианта его наведения на один из ЛА группы. Способ заключается в оценивании радиальных ФСК взаимного перемещения ЛА группы и ПО и распознавании варианта его наведения на один из ЛА группы путем приближения получаемых оценок к их оптимальным значениям за счет учета влияния варианта наведения ПО на динамику ФСК, комплексирования информации РЛС и бортового комплекса обороны (БКО), учета априорных данных о смене варианта наведения ракеты и адаптации фильтра к этим сменам на основе узкополосной доплеровской фильтрации сигнала, отраженного от ПО, с использованием процедуры быстрого преобразования Фурье, формирования отсчетов доплеровских частот, обусловленных отражениями сигнала от корпуса ПО, обработки сформированных отсчетов доплеровских частот и выходных показаний БКО в многоканальном фильтре совместного сопровождения ПО и распознавания варианта его наведения, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, работающего на основе априорных данных в виде математической модели системы «подвижный объект - РЛС - БКО - ЛА группы» со случайной скачкообразной структурой, включающей модели линейной динамики радиальных ФСК взаимного перемещения ЛА группы и ПО, их измерений в РЛС, марковской смены варианта наведения ПО, марковского индикатора варианта наведения ПО, представленного БКО, неуправляемых случайных возмущений и помех при начальных условиях, на выходе которого формируются оценки варианта наведения ПО на один из ЛА группы, безусловного математического ожидания ФСК взаимного перемещения ЛА группы и ПО и безусловной ковариационной матрицы ошибок их оценивания. 2 ил.

Заявленное изобретение относится к установкам для рекуперации и повторного использования контрольных газов при испытании изделий на герметичность. Сущность: установка включает линию (1) дренажа газа из объема изделия по окончании испытания и линию (2) подачи рекуперированного контрольного газа в объем изделия при повторном испытании. Линия (1) дренажа состоит из двух параллельных линий: линии (3) с установленными на ней последовательно компрессором (4) и первой накопительной емкостью (5) и линии (8) с установленными на ней последовательно вакуумным перекачивающим насосом (9) и второй накопительной емкостью (10), соединенными клапанами. Объем первой накопительной емкости (5) сообщается через клапаны, газовый редуктор (24), фильтр (26) и адсорбер (25) с линией (2) подачи сжатого газа в объем изделия. Внутри второй накопительной емкости (10) смонтирован герметичный эластичный “мешок” (15), к объему которого через клапаны подключены линия (8) от выхлопного патрубка перекачивающего вакуумного насоса (9) и линия (3), сообщающая герметичный эластичный “мешок” (15) с входным патрубком компрессора (4) линии (1). Объем первой накопительной емкости (5) сообщен с линией (38) входа газа в компрессор (4) трубопроводом с перепускным клапаном (36). Объем между оболочкой второй накопительной емкости (10) и оболочкой герметичного эластичного “мешка” (15) соединен через клапаны с линией подачи сжатого воздуха в этот объем. На внутренних стенках второй накопительной емкости (10) установлены чувствительные контактные датчики (32). Технический результат: возможность использования при испытаниях герметичности изделий, имеющих большие внутренние объемы, с относительно высокими давлениями контрольного газа. 1 ил.

Изобретение относится к области контроля устройств на герметичность и может быть использовано для контроля герметичности цилиндрических обечаек корпусов жидкостных ракет. Сущность: размещают изделие (2), объем которого герметизирован по торцам, в вертикальном положении осевой линии на монтажном столе (1) испытательной вакуумной камеры (3). Подключают к внутреннему объему изделия (2) магистраль подачи давления контрольного газа. Устанавливают на монтажном столе (1) и герметизируют вакуумный колпак испытательной вакуумной камеры (3). Удаляют из объема испытательной камеры (3) атмосферный воздух. Нагружают изделие (2) избыточным давлением контрольного газа. Регистрируют и измеряют утечку контрольного газа в объем испытательной камеры (3) масс-спектрометрическим течеискателем (7). Дополнительно к измерению общей негерметичности контролируемого изделия (2) определяют зону расположения сквозной микронеплотности на его поверхности. Для этого используют кольцевую локальную камеру (8), объем которой сообщен гибким вакуум-проводом (11) с вакуумной системой масс-спектрометрического течеискателя (7). Последовательно пошагово перемещают локальную камеру (8) вдоль всей боковой цилиндрической поверхности изделия (2), создавая герметичное соединение с его поверхностью после каждого шага. Регистрируют показания масс-спектрометрического течеискателя (7). Определяют кольцевую зону расположения дефекта герметичности на поверхности изделия (2). При этом образованный под кольцевой камерой (8) объем условно разделен по ее периметру на равные контрольные доли в четном количестве. Для установления местонахождения дефекта герметичности под периметром кольцевой камеры (8) отключают системы вакуумной откачки испытательной (3) и локальной (8) камер. Затем производят напуск атмосферного воздуха в объем испытательной камеры (3) и чистого сухого воздуха в объем локальной камеры (8) до атмосферного давления при сохранении избыточного испытательного давления контрольного газа в объеме контролируемого изделия (2). Производят выдержку в течение определенного времени, по истечении которого обеспечивают циркуляцию воздуха в объеме локальной камеры (8) в направлении штуцера подключения гибкого контрольного вакуум-провода (11) с известным объемным расходом. При этом одновременно напускают чистый сухой воздух с тем же объемным расходом через гибкий трубопровод (16), подключенный к объему локальной камеры (8) в точке, противоположной подключению контрольного гибкого вакуум-провода (11). Координату L∂ расположения дефекта под периметром локальной камеры (8) определяют по значению времени установления максимального сигнала масс-спектрометрического течеискателя (7) на поток гелия, поступающего в систему напуска течеискателя через щуп-зонд (30), подключенный к контрольному вакуум-проводу (11). Для установления, под какой из симметрично расположенных долей объема кольцевой локальной камеры (8) находится дефект герметичности, после прекращения циркуляции воздуха в объеме локальной камеры (8) выполняют повторную выдержку в течение такого же времени. Затем контролируют содержание фактически накопленного в объеме локальной камеры (8) гелия при его поступлении из микронеплотности путем обследования через два симметричных контрольных штуцера (24) на поверхности локальной камеры, расположенных на расстояниях по периметру кольцевой камеры (8), близких значению L∂, слева и справа от точки соединения контрольного вакуум-провода (11) с объемом локальной камеры (8). Технический результат: повышение чувствительности и надежности контроля герметичности, сокращение затрат труда и времени на поиск дефектов герметичности, повышение производительности испытаний. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению, в частности к очистке поверхностей изделий от загрязнений, а также к подготовке изделий к контролю герметичности. В предложенном способе подготовки топливной емкости к контролю герметичности емкости 11 помещают в герметичную камеру 1, из объемов камеры и емкости 1 вакуумным насосом 4, 5 удаляют атмосферный воздух. Затем выполняют обработку поверхностей емкости 11 подаваемым через форсуночные устройства 6, 7 растворителем при условии равенства расходов подаваемого и удаляемого из объемов растворителя. На первой стадии процесса подготовки производят обработку поверхностей емкости 11 струями подогретого до допустимой температуры растворителя с общим расходом, обеспечивающим удаление поверхностных загрязнений и нагрев емкости 11 до температуры подаваемого растворителя за технологически установленное время. На последующей стадии периодически чередуют операции воздействия на поверхности мелкокапельно-распыленного растворителя с общим расходом, обеспечивающим поддержание на поверхностях емкости ламинарно-стекающей пленки растворителя, с операциями вакуумной осушки. Общая длительность операций периодической обработки τо, без учета общего времени, затрачиваемого на удаление из емкости остатков жидкой и паровой фаз растворителя перед каждой операцией вакуумной осушки, τо=τэ+τвл+τр, где τэ - необходимая общая длительность удаления из канала сквозной микронеплотности растворимых закупоривающих загрязнений путем экстракции растворителем; τвл - необходимая общая длительность удаления из канала сквозной микронеплотности капиллярной влаги при вакуумной осушке; τр - необходимая общая длительность удаления из канала сквозной микронеплотности растворителя при вакуумной осушке. Длительность каждого периода воздействия растворителя и вакуумной осушки τ i = τ о n , где n - общее количество периодов воздействия, назначаемое из условия: n ≤ τ о − τ э τ у д , где τуд - длительность удаления из объемов остатков жидкой и паровой фаз растворителя перед каждой операцией вакуумной осушки; при этом длительность обработки растворителем τiэ и вакуумной осушки τio каждом периоде определяются τ i э = τ э n ; τ i o = τ в л + τ р n . Способ позволяет обеспечить повышение эффективности и надежности подготовки топливных емкостей к контролю герметичности, снижение трудовых и финансовых затрат на выполнение этих работ. 1 ил., 1 табл.

Изобретение относится к области испытательной техники и может быть использовано при испытаниях на герметичность систем ракетно-космической техники, содержащих в процессе штатной эксплуатации в ампулизированном состоянии рабочие жидкости, а также может найти применение в тех областях техники, где предъявляются высокие требования к надежности изделий по параметру «герметичность»

 


Наверх