Патенты автора Дьяконов Григорий Александрович (RU)

Изобретение относится к плазменной технике. Газоэлектрическая развязка (ГЭР) входит в состав тракта подачи рабочего тела в газоразрядную камеру источника заряженных частиц. Входной и выходной патрубки (1, 2) выполнены из электропроводящего материала. В диэлектрическом корпусе (3) образован проточный канал, протяженность которого превышает его максимальный диаметр. Проточный канал (4) имеет осесимметричную форму и выполнен с сужением, образованным кольцеобразным выступом (5) на поверхности канала. Газопроницаемая вставка выполнена из электропроводящего материала и установлена на входе в выходной патрубок (2) с образованием электрического контакта с выходным патрубком. Вставка образована последовательно установленными газопроницаемыми элементами (6) с пористой структурой. Поверхности близлежащих газопроницаемых элементов (6), через которые осуществляется газообмен, контактируют между собой. Элементы (6) изготовлены из порошкового электропроводящего материала методом порошковой металлургии. Открытые поры каждого газопроницаемого элемента (6) образуют криволинейные каналы, связывающие проточный канал (4) с выходным патрубком (2). Оптимальные значения степени пористости газопроницаемых элементов (6) составляют от 30% до 50%. Газопроницаемые элементы выполнены в форме диска, противоположные плоские поверхности которого обращены к входному и выходному патрубкам. 5 з.п. ф-лы, 1 ил.

Изобретение относится к электрическим ракетным двигателям, применяемым в составе двигательных установок космических аппаратов. Абляционный импульсный плазменный двигатель содержит установленные напротив друг друга два разрядных электрода: катод (1) и анод (2). Электроды образуют расширяющийся разрядный канал. Между электродами установлен торцевой изолятор (3). Электроды подключены через токоподводы (5 и 6) к емкостному накопителю энергии. Две диэлектрические шашки (4), выполненные из аблирующего материала, расположены со стороны торцевого изолятора между разрядными электродами. Устройство (7) инициирования электрического разряда содержит электроды, установленные через отверстие, выполненное в катоде, в разрядном канале между торцевыми поверхностями диэлектрических шашек. Разрядные электроды установлены так, что касательные к противоположно расположенным образующим их поверхностей в продольной плоскости сечения разрядного канала, по меньшей мере, в пределах участка канала между торцевыми поверхностями диэлектрических шашек расположены под острым углом относительно друг друга. Поперечное сечение диэлектрических шашек по форме и размерам соответствует продольному сечению участка разрядного канала, ограниченного поверхностью торцевого изолятора и боковой поверхностью шашек, обращенной к открытой части разрядного канала. Разрядные электроды выполняются с плоской или криволинейной поверхностью. При использовании изобретения повышается эффективность использования рабочего вещества, увеличивается удельный импульс тяги и повышается тяговая эффективность плазменного двигателя. 6 з.п. ф-лы, 3 ил.

Изобретение относится к двигателям космических аппаратов. Абляционный импульсный плазменный двигатель (АИПД) содержит параллельно расположенные плоские катод и анод, образующие разрядный канал. Две диэлектрические шашки, выполненные из аблирующего материала, установлены между катодом и анодом с противоположных боковых сторон разрядного канала симметрично относительно его продольной срединной плоскости, ориентированной перпендикулярно по отношению к плоским рабочим поверхностям катода и анода и разделяющей разрядный канал на две равные по объему части. Устройство перемещения диэлектрических шашек обеспечивает их подачу в направлении к продольной срединной плоскости. Между катодом и анодом установлен торцевой изолятор, образующий закрытую торцевую часть разрядного канала. В отверстии катода расположены электроды устройства инициирования электрического разряда. Токоподводы, соединяющие разрядные электроды с емкостным накопителем энергии, включают два силовых участка, имеющих плоскую форму и расположенных между катодом и анодом перпендикулярно относительно их плоских рабочих поверхностей. Силовые участки электрически изолированы относительно друг друга и расположены за пределами разрядного канала в плоскости, параллельной закрытой торцевой части разрядного канала, симметрично относительно продольной срединной плоскости между плоскостями, проходящими через боковые поверхности разрядных электродов. Первый силовой участок соединен с одной стороны с катодом, а с противоположной стороны, расположенной напротив торцевой части анода, - с контактом отрицательной полярности емкостного накопителя. Второй силовой участок соединен с одной стороны с анодом, а с противоположной стороны, расположенной напротив торцевой части катода, - с контактом положительной полярности емкостного накопителя. Изобретение позволяет увеличить среднемассовую скорость истечения плазмы из разрядного канала и удельный импульс АИПД, упростить конструкцию АИПД и повысить его надежность. 3 з.п. ф-лы, 5 ил.

Изобретение относится к высокочастотным ионным двигателям (ВЧИД) с индукционным возбуждением разряда в газоразрядной камере. Газоразрядный узел ВЧИД включает в свой состав газоразрядную камеру (1), выполненную из электротехнического корунда. Камера (1) содержит участок в форме сегмента сферы, расположенный со стороны патрубка (2) подачи рабочего газа, и сопряженный с ним участок цилиндрической формы, расположенный со стороны крепления электродов ионно-оптической системы (3). Индуктор (4) выполнен в виде спирали, охватывающей внешнюю поверхность камеры. Спираль индуктора образована медной трубкой. Трубчатые токоподводы (5 и 6) спирали индуктора соединены с ВЧ генератором. На внешней поверхности камеры выполнены четыре выступа (7), симметрично расположенные относительно оси симметрии камеры. На поверхность выступов (7) нанесено металлизационное покрытие. Витки спирали индуктора (4) соединены с внешней поверхностью камеры методом пайки в точках контакта с металлизированными поверхностями выступов (7). Эмиссионный и ускоряющий перфорированные электроды (8 и 9) изготовлены из сплава молибдена и соединены с металлизированными контактными поверхностями камеры (1) и промежуточных изоляторов (11 и 12) методом пайки. Технический результат заключается в повышении надежности и ресурса ВЧИД, при этом уменьшаются габаритные размеры и масса газоразрядного узла и ВЧИД в целом. 10 з.п. ф-лы, 2 ил.

Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться, в частности, в качестве электроракетного двигателя. Катод (1) и два электрически изолированных анода (2, 3) образуют ускорительный канал эрозионного импульсного плазменного ускорителя (ЭИПУ). Диэлектрические шашки, выполненные из аблирующего материала, установлены между первым анодом (2) и катодом (1). ЭИПУ содержит средство перемещения диэлектрических шашек, торцевой изолятор (4), устройство инициирования электрического разряда с электродами (7). Система электропитания включает два емкостных накопителя энергии (9, 10), токоподводы, соединяющие накопители энергии с разрядными электродами, и блок (8) электропитания устройства инициирования электрического разряда. Первый анод (2) расположен в ускорительном канале со стороны торцевого изолятора (4). Второй анод (3) расположен со стороны выходной части ускорительного канала. Первый накопитель энергии (9) подключен между вторым анодом (3) и катодом (1). Второй накопитель энергии (10) подключен к анодам (2, 3). С первым анодом (2) второй накопитель (10) соединен через управляющий токоподвод, выполненный в виде стержня (11). Управляющий токоподвод расположен со стороны торцевого изолятора (4) и электрически изолирован от ускорительного канала. Выполняющий функцию управляющего токоподвода стержень (11) расположен между первым анодом (2) и катодом (1) и ориентирован ортогонально по отношению к поверхности анода и к противоположной поверхности катода. Стержень (11) подключен ко второму емкостному накопителю (10) так, что протекающий по нему электрический ток IT одинаково направлен по отношению к току разряда IP между первым анодом (2) и катодом (1). Технический результат - упрощение конструкции ЭИПУ, повышение его надежности и увеличение ресурса, повышение управляемости и стабильности характеристик генерируемого плазменного потока за счет синхронизации процессов испарения и ускорения рабочего вещества. 12 з.п. ф-лы, 4 ил.

Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться в импульсных плазменных ускорителях, применяемых, в частности, в качестве электроракетных двигателей. Катод (1) и анод (2) эрозионного импульсного плазменного ускорителя (ЭИПУ) имеют плоскую форму. Между разрядными электродами (1 и 2) установлены две диэлектрические шашки (4), выполненные из абляционного материала. Торцевой изолятор (6) установлен между разрядными электродами в области размещения диэлектрических шашек (4). Устройство (9) инициирования электрического разряда подключено к электродам (8). Емкостный накопитель энергии (3) системы электропитания подключен через токоподводы к разрядным электродам (1 и 2). Разрядный канал ЭИПУ образован поверхностями разрядных электродов (1 и 2), торцевого изолятора (б) и торцевых частей диэлектрических шашек (4). Разрядный канал выполнен с двумя взаимно перпендикулярными срединными плоскостями. Разрядные электроды (1 и 2) установлены симметрично относительно первой срединной плоскости. Диэлектрические шашки (4) установлены симметрично относительно второй срединной плоскости. Касательная к поверхности торцевого изолятора (6), обращенной к разрядному каналу, направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. В торцевом изоляторе (6) выполнено углубление (7) с прямоугольным поперечным сечением. В углублении (7) со стороны катода (1) расположены электроды (8). Касательная к фронтальной поверхности углубления (7) направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. Углубление (7) вдоль поверхности торцевого изолятора (6) имеет форму трапеции. Большее основание трапеции расположено у поверхности анода (2). Меньшее основание трапеции расположено у поверхности катода (1). На поверхности торцевого изолятора (6) выполнены три прямолинейные канавки, ориентированные параллельно поверхностям разрядных электродов (1 и 2). Технический результат заключается в увеличении ресурса, повышении надежности, тяговой эффективности, эффективности использования рабочего вещества и стабильности тяговых характеристик ЭИПУ за счет равномерного испарения рабочего вещества с рабочей поверхности диэлектрических шашек. 8 з.п. ф-лы, 3 ил.

Изобретение относится к плазменной технике и к плазменным технологиями и может использоваться в импульсных плазменных ускорителях, применяемых, в частности, в качестве электроракетных двигателей

 


Наверх