Патенты автора Канунников Юрий Александрович (RU)

Изобретение относится к области приборостроения и может быть использовано в системах регулирования газотурбинных двигателей. Измеритель расхода содержит корпус с входным и выходным штуцерами, внутри которого помещен генератор колебаний со струйными элементами, выполненный в виде стапелированных пластин, и преобразователь колебаний струи в электрический сигнал, состоящий из контейнера с пьезодатчиком, формирующим электрический сигнал о фактическом расходе рабочей среды, управляющие полости пьезодатчика соединены магистралями с каналами обратной связи струйного генератора, в магистралях установлены конструктивно идентичные жиклеры, магистрали выполнены одинаковой длины и ширины, имеют одинаковое число поворотов на один и тот же угол. Технический результат - повышенная помехозащищенность и точность измерителя расхода за счет устранения влияний пульсаций давления измеряемой среды на входе в измеритель расхода на работу пьезодатчика. 2 ил.

Способ определения расходных характеристик струйных датчиков расхода путем протяжки воздуха из атмосферы через последовательно установленные три датчика и образцовое микросопло, фиксации температуры, давления атмосферного воздуха, разрежения на выходе первого, второго и третьего датчика, выходного сигнала f1 первого датчика. Определение характеристик первого датчика (1) проводят при подключении параллельно первому датчику двух последовательно установленных второго (2) и третьего (3) датчиков, идентичных по характеристикам первому (1), причем третий датчик (3) установлен для получения разрежения на втором датчике (2), равного половине разрежения на первом (1), при этом: - на первом этапе устанавливают протяжку воздуха такой, чтобы выходной сигнал f11 первого датчика (1) соответствовал выходному сигналу f1 первого датчика (1) при испытаниях датчика с образцовым микросоплом (4). Фиксируют выходные сигналы f11, f21 первого (1) и второго датчика (2), разрежения на выходе первого ΔР11 и второго ΔР21 датчика, - на втором этапе устанавливают протяжку воздуха такой, чтобы выходной сигнал f12 первого датчика (1) стал равен выходному сигналу f21 второго датчика (2) на предыдущем этапе, фиксируют выходные сигналы f12, f22 первого и второго датчиков, - на N-м этапе устанавливают протяжку воздуха такой, чтобы выходной сигнал f1N первого датчика (1) стал равен выходному сигналу f2N-1 второго датчика (2) на предыдущем (N-1)-м этапе, фиксируют выходные сигналы f1N, f2N первого и второго датчика, - определяют РХ ΔР1N = f(Q1N) датчика, где ΔР1N = ΔР11/2(N-1) - величина разрежения на выходе первого датчика (1); Q1N - величина расхода через первый датчик, соответствующая выходному сигналу f1N. Достигается повышение точности определения расходных характеристик струйных датчиков расхода. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области определения массового расхода воздуха или жидкости (среды) и может быть использовано в энергетике, химической, нефтехимической и других отраслях промышленности. Способ измерения массового расхода путем измерения ротаметром объемного расхода рабочей среды заключается в том, что параллельно ротаметру подключают струйный датчик расхода (СДР), измеряют объемный расход рабочей среды через СДР и рассчитывают массовый расход рабочей среды G по формуле: где QР - объемный расход рабочей среды, проходящий через ротаметр; QСДР - объемный расход рабочей среды, проходящий через СДР; А и В - постоянные коэффициенты, величины которых зависят от геометрических размеров элементов ротаметра и СДР, от материалов из которых изготовлен поплавок ротаметра. Технический результат - измерение массового расхода без учета плотности рабочей среды, повышение точности измерения.

Изобретение относится к области определения объемного расхода воздуха, в частности определения утечек воздуха через агрегат. Способ измерения ротаметром объемного расхода воздуха через агрегат заключается в том, что воздух от источника высокого давления пропускают в атмосферу через последовательно установленные вентиль, агрегат и ротаметр при расходе, превышающем верхний предел показаний ротаметра, параллельно ротаметру подключают регулируемый дроссель и определяют объемный расход воздуха Q через агрегат по формуле: Q= Qn+(Qn1-Qn2), где Q - объемный расход воздуха через агрегат; Qn - объемный расход воздуха через ротаметр при показании поплавка ротаметра - n; Qn1 - объемный расход воздуха через ротаметр при закрытом регулируемом дросселе; Qn2 - объемный расхода воздуха через ротаметр при открытом регулируемом дросселе. Технический результат - увеличение диапазона измеряемого расхода ротаметром. 1 з.п. ф-лы.

Изобретение предназначено для измерения температуры газовых потоков, например, в газотурбинном двигателе. Предложенный струйный датчик температуры содержит струйный генератор, снабженный резонансной камерой с разделителем, входным соплом и выпускным отверстием, которое через канал отвода газа соединено с выходным соплом, и преобразователь сигналов, причем канал отвода и выходное сопло струйного генератора расположены в газовой среде, температура которой определяется. В струйный датчик температуры введен дополнительный жиклер, соединяющий газовую среду, температура которой определяется, с полостью на входе в выходное сопло. Технический результат - введение дополнительного жиклера улучшает работу датчика, повышает стабильность работы (расширяет рабочий диапазон измерения температуры, повышает точность струйного датчика температуры). 1 ил.
Изобретение относится к области определения объемного расхода газа или жидкости и может быть использовано в теплоэнергетической, газовой и других отраслях промышленности. Способ измерения объемного расхода струйным преобразователем (СПР) заключается в том, что газ или жидкость пропускают через параллельно установленные СПР и ламинарное сопротивление с известными геометрическими параметрами, фиксируют частоту колебаний струйного генератора СПР и определяют объемный расход Q, проходящий по трубопроводу по формуле: Q = QСПР + QЛС = АСПР⋅f + АЛС⋅f2/υ, где QСПР - объемный расход среды, проходящей по трубопроводу через СПР; QЛС - объемный расход среды, проходящей по трубопроводу через ламинарное сопротивление; f - частота колебаний струйного генератора СПР, АСПР - коэффициент пропорциональности, зависящий от геометрических параметров струйного датчика преобразователя; АЛС - коэффициент пропорциональности, зависящий от геометрических параметров ламинарного сопротивления; υ - кинематическая вязкость среды. Технический результат - расширение диапазона измеряемого объемного расхода газа или жидкости, проходящего по трубопроводу.

Струйный датчик температуры относится к области теплофизических измерений и может быть использован для измерения температуры газовых потоков в газотурбинном двигателе. Датчик содержит камеру прямого торможения, пневмоэлектропреобразователь, струйный генератор колебаний. Конструктивно система выполнена таким образом, что в струйном генераторе колебаний разделитель расположен вдоль оси скоростного напора газового потока. Технический результат - повышение точности измерения температуры торможения за счет исключения влияния составляющей, перпендикулярной оси сопла, создающей смещение потока. 2 ил.

Изобретение относится к области термометрии и может быть использовано для измерения температуры газовых потоков в газотурбинном двигателе. Струйный датчик температуры содержит струйный генератор, снабженный резонансной камерой с разделителем, входным соплом и выпускным отверстием, которое через канал отвода газа соединено с выходным соплом, а также преобразователь сигналов. Канал отвода газа и выходное сопло струйного генератора расположены в газовой среде. Технический результат - повышение точности измерения температуры газа за счет исключения изменения температуры газа внутри датчика. 1 ил.

Изобретение относится к области приборостроения и может быть использовано при измерении температуры газа (воздуха) в газотурбинном двигателе (ГТД). Заявлен способ измерения температуры газа (воздуха) в газотурбинном двигателе (ГТД), который заключается в том, что газ, температуру которого измеряют, пропускают через струйный генератор с пневмоэлектропребразователем сигналов, обдувают этим газом термопару, установленную в выходном канале струйного генератора. Передают электрические сигналы пневмоэлектропреобразователя и термопары в вычислительный блок. На установившихся режимах работы ГТД периодически фиксируют частоту колебаний струйного генератора и температуру газа, определенную по электрическому напряжению, сформированному термопарой, и определяют температуру газа в ГТД по формуле: ,где Т - температура газа в ГТД, K; f - текущая частота колебаний струйного генератора, Гц; fб - частота колебаний струйного генератора на установившемся режиме работы ГТД, Гц; ТТб - температура газа, определенная термопарой на установившемся режиме работы ГТД, K; ад - коэффициент, характеризующий динамические качества струйного генератора как измерителя температуры; ТТ - текущая температура газа, определенная по показаниям термопары, K. Технический результат - повышение точности измерения температуры газа в ГТД.

Изобретение относится к способам измерения температуры газа (воздуха) в газотурбинном двигателе (ГТД). Технический результат заключается в повышении точности определения температуры газа в ГТД. Измеряют температуру газа, пропускаемого через струйный акустический генератор, фиксируют частоту колебаний и определяют температуру газа при известных параметрах генератора и базовых условиях по формуле , при этом коэффициент k выражают в виде: . 2 н.п. ф-лы.

Дозатор газообразного топлива относится к области регулирования газотурбинных двигателей (ГТД), работающих на газообразном топливе, и может быть использован для подачи газообразного топлива в камеру сгорания ГТД. Дозатор газообразного топлива содержит дозирующую иглу. Дозирующая игла связана с входной магистралью и разделяет полость высокого давления и полость отдозированного топлива. Перед дозирующей иглой во входной магистрали установлен циклонный фильтр. Циклонный фильтр содержит рабочую камеру с входным и выходным соплами и вентиляционным отверстием. Входное сопло соединено с входной магистралью, а выходное - с полостью высокого давления. Вентиляционное отверстие соединено с полостью отдозированного топлива, а полость отдозированного топлива соединена с форсунками двигателя. Введение циклонного фильтра позволяет очистить газообразное топливо от твердых и жидких частиц и тем самым устранить эрозионный износ элементов проточной части дозирующей иглы и существенно повысить ресурс устройства. 1 ил.

Изобретение относится к области автоматического регулирования газотурбинных двигателей (ГТД). Устройство управления положением лопаток регулируемого направляющего аппарата (РНА) компрессора газотурбинного двигателя содержит регулируемый выходной дроссель, соединенный через силовой орган с лопатками РНА, датчик отношения абсолютных давлений (ДОАД) с входным соплом подвода высокого давления и каналом подвода низкого давления, струйный усилитель, выходные каналы которого соединены с управляющими полостями силового органа. В устройстве установлены элемент сравнения (ЭС), содержащий первый и второй управляющие каналы, и входной дроссель, соединенный каналом с компрессором ГТД и образующий вместе с регулируемым выходным дросселем междроссельную камеру (МК), выход которой соединен с соплом питания ЭС и входным соплом подвода высокого давления ДОАД, соединенного выходным каналом с первым управляющим каналом ЭС, а второй управляющий канал ЭС и канал подвода низкого давления ДОАД соединены с полостью на входе в двигатель. Устройство содержит пневмофиксатор, содержащий подпружиненный клапан с поршневым приводом, имеющим первую и вторую управляющие полости, при этом первая управляющая полость соединена с полостью низкого давления, а вторая управляющая полость - с выходным каналом струйного усилителя, управляющей полостью силового органа, и через клапан - с полостью высокого давления. Данное устройство позволяет повысить точность работы устройства управления положением лопаток РНА на низких режимах работы ГТД. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области пневмоавтоматики, в частности испытаниям пневмоприводов двустороннего действия

 


Наверх