Патенты автора Моисеев Виктор Владимирович (RU)

Изобретение относится к способу разработки газового месторождения на завершающей стадии. Способ включает применение модульных компрессорных установок с их подключением к кустам, группам газовых скважин и трубопроводам внутрипромысловой системы сбора газа и регулированием объемов отбираемого газа. Подача газа производится от одних существующих газовых промыслов на другие существующие газовые промысла с частичной или полной ликвидацией на первых газовых промыслах существующего оборудования подготовки и компримирования газа. Производится математическое моделирование разработки газового месторождения с определением необходимых уровней отбираемого газа, срока и периода остановки по каждому кусту, группе газовых скважин. По результатам моделирования разработки газового месторождения устанавливаются определенные уровни отбираемого газа, срок и периоды остановки по кустам, группам газовых скважин с поддержанием необходимого уровня отбора газа с помощью модульных компрессорных установок и подачей газа от одних существующих газовых промыслов на другие существующие газовые промыслы. Технический результат заключается в увеличении срока и повышении стабильности эксплуатации газовых скважин, системы сбора газа, оборудования компримирования и подготовки газа с повышением коэффициента извлечения газа месторождения. 2 ил.

Изобретение относится к области добычи природного газа. Техническим результатом является обеспечение стабильной эксплуатации газопроводов системы сбора газа со снижением потерь давления по трассе газопровода при одновременном уменьшении нагрузки на системы подготовки газа к магистральному транспорту и регенерации метанола. Заявлен способ транспортировки продукции газовых скважин, включающий подачу продукции эксплуатационных газовых скважин в сепаратор модульной компрессорной установки (МКУ), направление отсепарированного от жидкости газового потока в винтовой маслозаполненный компрессор МКУ. При этом отсепарированную в сепараторе МКУ жидкость направляют на утилизацию или на вход в газопровод внутрипромысловой системы сбора газа, компримированный газовый поток, содержащий масло, направляется для его отделения в маслоотделитель МКУ. Осуществляют охлаждение очищенного газа в аппарате воздушного охлаждения (АВО) или теплообменника МКУ, его подачу в фильтр-коалесцер МКУ для доулавливания масла. Транспортировку компримированного, очищенного и охлажденного газового потока осуществляют по газопроводу внутрипромысловой системы сбора газа во входной сепаратор установки подготовки газа. После чего отсепарированный газовый поток подвергается компримированию и/или подготовке к магистральному транспорту на оборудовании установки подготовки газа. При этом в газовые скважины и/или на вход газопровода системы сбора газа осуществляют подачу метанола. Отсепарированная во входном сепараторе установки подготовки газа жидкость подвергается регенерации на установке регенерации метанола или утилизации в зависимости от содержания в ней метанола. На входе в газопровод внутрипромысловой системы сбора устанавливают трехходовой кран, обеспечивающий запуск очистного поршня, а на его выходе трехходовой кран, обеспечивающий прием очистного поршня. Производится установление через изменение режима работы АВО или теплообменника МКУ такой температуры газа во входном сепараторе установки подготовки газа, которая одновременно исключает замерзание водометанольного раствора (BMP), находящегося в газопроводе системы сбора и входном сепараторе установки подготовки газа, снижает нагрузку на системы подготовки газа к магистральному транспорту, регенерации метанола и сокращает безвозвратные потери метанола с компримированным и подготовленным к магистральному транспорту газом. Подача метанола в газовые скважины и/или на вход газопровода системы сбора газа осуществляется в количестве, исключающем замерзание BMP, находящегося в газопроводе системы сбора и входном сепараторе установки подготовки газа. При этом достигаемая через подачу метанола необходимая концентрация BMP определяется в соответствии с фактически достигаемой температурой потока на входе во входные сепараторы установки подготовки газа. 2 ил.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ автоматического поддержания температурного режима на установках низкотемпературной сепарации газа с турбодетандерными агрегатами (ТДА) на Крайнем Севере РФ включает предварительную очистку добытой газоконденсатной смеси от механических примесей с частичным отделением смеси нестабильного газового конденсата (НГК) и водного раствора ингибитора (ВРИ) в сепараторе первой ступени сепарации, которую отводят из кубовой части сепаратора в разделитель жидкостей (РЖ), а газоконденсатную смесь, выходящую из сепаратора первой ступени сепарации, разделяют на два потока и подают их для предварительного охлаждения на вход первых секций рекуперативных теплообменников (ТО) «газ-газ» и «газ-конденсат». Газоконденсатную смесь распределяют по потокам с помощью крана-регулятора (КР), установленного на входе ТО «газ-конденсат», так чтобы обеспечить поддержание заданной температуры НГК, подаваемого в магистральный конденсатопровод (МКП). После прохождения первых секций ТО оба потока газоконденсатной смеси объединяют и подают на вход турбины ТДА, вращение которой контролируют датчиком скорости вращения ротора ТДА, и газоконденсатная смесь, проходя через турбину, охлаждается и поступает в низкотемпературный сепаратор, оснащенный датчиком температуры, в котором ее разделяют на осушенный холодный газ и смесь НГК и ВРИ, которую из кубовой части низкотемпературного сепаратора подают на вход второй секции ТО «газ-конденсат» и далее в РЖ, где происходит ее дегазация и разделение на фракции, и далее из РЖ НГК насосным агрегатом подают в МКП, газ выветривания отправляют на утилизацию и/или компримируют и направляют в магистральный газопровод (МГП), ВРИ отправляют в цех регенерации ингибитора. Холодный осушенный газ, выходящий из низкотемпературного сепаратора, разделяют на два потока, один из которых подают на вход второй секции ТО «газ-газ», а второй - на байпас этой секции, оснащенный КР расхода газа, и этот КР изменяет соотношение потоков газа через ТО и байпас, обеспечивая в реальном масштабе времени коррекцию температуры газа, поступающего в компрессор ТДА, который дожимает газ до рабочего давления и заданной температуры, после чего его подают в МГП. Автоматизированная система управления технологическими процессами (АСУ ТП) с момента запуска установки в эксплуатацию поддерживает заданный расход НГК, подаваемый в МКП, используя для этого заданные значения уставок контролируемых параметров и границы допустимых отклонений их значения от уставок. Как только АСУ ТП обнаружит выход одного из контролируемых параметров за пределы установленных ему границ, нарушающий технологический регламент работы установки, АСУ ТП изменяет на один шаг значение уставки давления Рвх. добываемой газоконденсатной смеси на входе установки на величину ΔРвх. в интервале, определяемом неравенством Pmin≤Рвх.≤Pmax, где Pmin минимальное, а Pmax максимальное значение уставки давления газоконденсатной смеси на входе установки. Величину ΔРвх. назначают из соотношения ΔРвх.=(Pmax - Pmin)/n, где n – число разрешенных шагов изменения уставки Рвх., и это изменение уставки АСУ ТП осуществляет в направлении, которое позволяет устранить возникшее нарушение. Одновременно АСУ ТП следит за тем, чтобы рабочий орган КР, управляющий давлением на входе установки, находился в рамках допустимых границ его перемещения, и удерживает режим управления технологическими процессами установки с новым значением уставки в течение интервала времени не менее τconst, являющегося индивидуальной характеристикой установки, определяемой экспериментально. Если остальные контролируемые параметры технологического процесса за это время вернутся в пределы установленных для них границ, то АСУ ТП фиксирует в своей базе данных (БД) это значение как новую уставку давления добываемой газоконденсатной смеси на входе в установку для поддержания расхода НГК, подаваемого в МКП, и генерирует сообщение оператору об автоматической смене режима работы установки и его новых характеристиках, и далее АСУ ТП реализует этот режим эксплуатации установки. В противном случае АСУ ТП изменяет значение уставки еще на один шаг в том же направлении. Технический результат заключается в повышении надежности эксплуатации установки и эффективности процесса подготовки газа и газового конденсата к дальнему транспорту. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ автоматического управления установкой низкотемпературной сепарации газа с аппаратами воздушного охлаждения (АВО) на Крайнем Севере РФ включает предварительную очистку добытой газоконденсатной смеси от механических примесей и частичное отделение смеси нестабильного газового конденсата (НГК) и водного раствора ингибитора (ВРИ) в сепараторе первой ступени сепарации, после чего смесь НГК и ВРИ из кубовой части сепаратора отводят в разделитель жидкостей (РЖ), а газоконденсатную смесь с выхода сепаратора первой ступени сепарации подают на вход АВО, который система автоматического управления технологическими процессами (АСУ ТП) включает в работу при достижении заданного перепада температур газоконденсатной смеси и воздуха атмосферы, подав соответствующий сигнал на вход системы автоматического управления (САУ) АВО, которая управляет работой АВО, обеспечивая понижение температуры газоконденсатной смеси на его выходе до заданных значений, необходимых для поддержания требуемой температуры в низкотемпературном сепараторе, после чего предварительно охлажденную в АВО газоконденсатную смесь разделяют на два потока, первый из которых направляют в трубное пространство первой секции рекуперативного теплообменника (ТО) «газ-газ», где его охлаждают встречным потоком осушенного газа, поступающего из низкотемпературного сепаратора и проходящего через вторую секцию ТО «газ-газ», а второй поток через клапан-регулятор (КР) подают в трубное пространство первой секции ТО «газ-конденсат», где его охлаждают встречным потоком смеси НГК и ВРИ, отводимой с кубовой части низкотемпературного сепаратора и проходящей через вторую секцию ТО «газ-конденсат». Расход газоконденсатной смеси по этим потокам распределяет АСУ ТП с помощью КР, установленного на входе первой секции ТО «газ-конденсат», таким образом, чтобы температура НГК, подаваемого в магистральный конденсатопровод (МКП), находилась в заданном технологическим регламентом диапазоне. После выхода газоконденсатной смеси из первых секций ТО «газ-газ» и ТО «газ-конденсат» ее потоки объединяют и подают через КР, выполняющий роль управляемого редуктора, на котором осуществляют адиабатическое расширение газоконденсатной смеси и направляют ее в оснащенный датчиком температуры низкотемпературный сепаратор, в котором производят окончательное разделение газоконденсатной смеси на осушенный холодный газ и смесь НГК с ВРИ, которую из кубовой части низкотемпературного сепаратора подают на вход второй секции ТО «газ-конденсат» и далее в РЖ, в котором выделяют НГК, ВРИ и газ выветривания, после чего НГК с помощью насосного агрегата подают в МКП, ВРИ направляют в цех регенерации ингибитора установки, газ выветривания отправляют на утилизацию или закачку в магистральный газопровод (МГП). Холодный осушенный газ, выходящий из низкотемпературного сепаратора, разделяют на два потока, один из которых подают на вход второй секции ТО «газ-газ», а второй – на байпас этой секции, оснащенный КР расхода газа, с помощью которого АСУ ТП регулирует соотношение потоков осушенного газа, проходящих через вторую секцию ТО «газ-газ» и байпас, обеспечивая в реальном масштабе времени коррекцию температуры осушенного газа до заданных значений, требуемых технологическим регламентом установки при подаче газа в МГП. АСУ ТП в тандеме с САУ АВО с момента запуска установки в эксплуатацию реализуют подачу заданного планом объема осушенного газа в МГП, для чего используют первоначально заданные значения уставок контролируемых параметров и границы их допустимых отклонений от значения уставок. Как только АСУ ТП обнаружит выход одного из контролируемых параметров за пределы установленных границ, нарушающий технологический регламент работы установки, АСУ ТП изменяет на один шаг значение уставки давления Рвх. газоконденсатной смеси на входе установки на величину ΔРвх. в интервале, определяемом неравенством Pmin≤Рвх.≤Pmax, где Pmin минимально допустимое, а Pmax максимально допустимое значение давления газоконденсатной смеси на входе установки. Величину ΔРвх. назначают из соотношения ΔРвх.=(Pmax-Pmin)/n, где n – число разрешенных шагов изменения уставки Рвх.. Это изменение уставки АСУ ТП осуществляет в направлении, которое позволяет купировать возникшее нарушение. Одновременно АСУ ТП следит за тем, чтобы рабочий орган КР, управляющий давлением на входе установки, находился в рамках допустимых границ его перемещения, и удерживает режим управления технологическими процессами установки с новым значением уставки в течение интервала времени не менее τconst, являющегося индивидуальной характеристикой установки, определяемой экспериментально. Если остальные контролируемые параметры технологического процесса за это время вернутся в пределы установленных для них границ, то АСУ ТП фиксирует это значение как новую уставку для реализации плана расхода осушенного газа, подаваемого в МГП, и генерирует сообщение оператору об автоматической смене режима работы установки и его новых характеристиках, и далее АСУ ТП в тандеме с САУ АВО реализуют этот режим эксплуатации установки. В противном случае АСУ ТП изменяет значение уставки еще на один шаг в том же направлении. Технический результат заключается в повышении надежности эксплуатации установки и эффективности процесса подготовки газа и газового конденсата к дальнему транспорту. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ автоматического управления установкой низкотемпературной сепарации газа (далее – установкой) с турбодетандерными агрегатами (ТДА) включает предварительную очистку добытой газоконденсатной смеси от механических примесей и частичное отделение смеси нестабильного газового конденсата (НГК) с водным раствором ингибитора (ВРИ) в сепараторе первой ступени сепарации с последующим отводом этой смеси из кубовой части сепаратора в разделитель жидкостей (РЖ). Газожидкостную смесь, выходящую из сепаратора, разделяют на два потока и подают для предварительного охлаждения на вход первых секций рекуперативных теплообменников (ТО) «газ-газ» и «газ-конденсат», распределив эту смесь по потокам с помощью крана-регулятора (КР), который установлен на входе первой секции ТО «газ-конденсат», и эти потоки газожидкостной смеси с выходов первых секций этих ТО объединяют и подают на вход турбины ТДА, оснащенного датчиком скорости вращения ротора, проходя который газожидкостная смесь адиабатически расширяется, а ее температура понижается до значений, близких к предусмотренным технологическим регламентом установки, и эту охлажденную газожидкостную смесь подают в низкотемпературный сепаратор газа, оснащенный датчиком температуры, в котором ее окончательно разделяют на осушенный холодный газ и смесь НГК с ВРИ, которую из низкотемпературного сепаратора второй ступени сепарации отводят через вторую секцию ТО «газ-конденсат» в РЖ для дегазации и разделения на фракции, а холодный осушенный газ, выходящий из низкотемпературного сепаратора, разделяют на два потока, один из которых подают на вход второй секции ТО «газ-газ», а второй на байпас этой секции, оснащенный КР расхода газа, который изменяет соотношение потоков охлажденного газа через вторую секцию ТО «газ-газ». Далее эти потоки газа, выходящие из второй секции ТО «газ-газ» и байпаса, объединяют и подают в компрессор ТДА, который дожимает газ до рабочего давления, и направляют в магистральный газопровод (МГП), из РЖ НГК направляют в магистральный конденсатопровод (МКП), ВРИ – в цех регенерации ингибитора, а газ выветривания – на утилизацию или закачку в МГП. Автоматизированная система управления технологическими процессами (АСУ ТП) с момента запуска установки в эксплуатацию реализует режим работы установки, используя первоначально заданные значения уставок контролируемых параметров, а также следит за тем, чтобы актуальное на данный момент значение уставки Vycт_ТДА скорости вращения ротора ТДА не вышло за верхнюю или нижнюю границу допустимых скоростей вращения. Как только АСУ ТП обнаружит выход одного из контролируемых параметров за пределы установленных границ, нарушающий технологический регламент работы установки, АСУ ТП пошагово изменяет значение уставки плана расхода добываемой газоконденсатной смеси QГКС_ПЛАН по установке на величину ΔQГКС_ПЛАН в интервале, определяемом неравенством и это изменение уставки АСУ ТП осуществляет в направлении, которое определяет возникшее нарушение. АСУ ТП после каждого шага удерживает режим управления технологическими процессами установки с новым значением уставки QГКС_ПЛАН в течение определенного интервала времени, и если значения остальных вышеперечисленных контролируемых параметров технологических процессов за это время окажутся в пределах установленных для них границ, то АСУ ТП фиксирует это значение новой уставки QГКС_ПЛАН плана расхода добываемой газоконденсатной смеси как рабочее в своей базе данных (БД) и генерирует сообщение оператору о совершенном автоматическом переходе на новый режим работы и выводит его характеристики, после чего АСУ ТП реализует вновь выбранный режим эксплуатации установки. В противном случае АСУ ТП изменяет значение уставки еще на один шаг в том же направлении. Технический результат заключается в повышении надежности эксплуатации установки и эффективности процесса подготовки газа и газового конденсата к дальнему транспорту. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ автоматического управления установкой низкотемпературной сепарации газа (далее – установка), работающей в условиях севера РФ, включает предварительную очистку добытой газоконденсатной смеси от механических примесей с отделением нестабильного газового конденсата (НГК) и водного раствора ингибитора (ВРИ) в сепараторе первой ступени сепарации, после чего смесь НГК и ВРИ из кубовой части этого сепаратора отводят в разделитель жидкостей (РЖ), а газоконденсатную смесь с выхода сепаратора первой ступени сепарации разделяют на два потока и охлаждают их в первых секциях рекуперативных теплообменников (ТО) «газ-газ» «газ-конденсат». Поток, поступающий в ТО «газ-конденсат», идет через клапан-регулятор (КР) расхода газоконденсатной смеси, который регулирует ее расход, обеспечивая поддержание заданной температуры НГК на выходе второй секции ТО «газ-конденсат», и далее потоки, выходящие из первых секций ТО «газ-газ» и ТО «газ-конденсат», объединяют и подают через КР, выполняющий роль управляемого редуктора, на котором осуществляют адиабатическое расширение газоконденсатной смеси, и направляют ее в оснащенный датчиком температуры низкотемпературный сепаратор, где осуществляют окончательное разделение газоконденсатной смеси на осушенный газ и смесь НГК с ВРИ, которую из кубовой части низкотемпературного сепаратора подают на вход второй секции ТО «газ-конденсат» и далее в РЖ, в котором выделяют НГК, ВРИ и газ выветривания, после чего НГК с помощью насосного агрегата подают в магистральный конденсатопровод – МКП, поток выделенного газа – газ выветривания из РЖ транспортируют для утилизации или компримирования и подачи в магистральный газопровод – МГП, ВРИ направляют в цех регенерации ингибитора, а холодный осушенный газ, выходящий из низкотемпературного сепаратора, разделяют на два потока, один из которых подают на вход второй секции ТО «газ-газ», а второй – на байпас этой секции, оснащенный КР расхода газа, который изменяет соотношение проходящих потоков газа через ТО и байпас, обеспечивая в реальном масштабе времени коррекцию температуры газа до заданных значений, требуемых технологическим регламентом установки при подаче газа в МГП. Автоматизированная система управления технологическими процессами (АСУ ТП) с момента запуска установки в эксплуатацию реализует режим ее работы, используя первоначально заданные значения уставок контролируемых параметров, которые вводят в базу данных – БД АСУ ТП перед запуском установки в эксплуатацию. Как только АСУ ТП обнаружит выход одного из контролируемых параметров за пределы установленных границ, нарушающий технологический регламент работы установки, АСУ ТП пошагово изменяет значение уставки плана расхода добываемой газоконденсатной смеси QГКС_ПЛАН по установке на величину ΔQГКС_ПЛАН в интервале, определяемом неравенством Qmin_гкс≤QГКС_ПЛАН≤Qmax_гкс, где Qmin_гкс - минимально допустимое, a Qmax_гкс - максимально допустимое значение расхода добываемой газоконденсатной смеси по установке. Это изменение уставки АСУ ТП осуществляет в направлении, обеспечивающем устранение выявленного нарушения, и после каждого шага удерживает режим управления технологическими процессами установки с новым значением уставки в течение определенного интервала времени. Если значения остальных контролируемых параметров технологического процесса за это время вернутся в пределы установленных для них границ допустимых вариаций, то АСУ ТП фиксирует это значение новой уставки плана расхода добываемой газоконденсатной смеси как рабочее и генерирует сообщение оператору об автоматической смене режима работы и его новых характеристиках, и далее АСУ ТП реализуют вновь выбранный режим эксплуатации установки. В противном случае АСУ ТП изменяет значение уставки еще на один шаг в том же направлении. Технический результат заключается в повышении надежности эксплуатации установки и эффективности процесса подготовки газа и газового конденсата к дальнему транспорту. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке месторождений углеводородов. Способ регулирования давления на входе в промысел при разработке многопластовых газовых месторождений включает в себя вскрытие скважинами продуктивных пластов многопластового месторождения с различным пластовым давлением и осуществление добычи углеводородов по двум пластам одновременно, с помощью увеличения проходного сечения устьевого регулируемого углового штуцера, установленного в составе обвязки скважин пласта с относительно высоким пластовым давлением. Изменение проходного сечения устьевого регулируемого углового штуцера осуществляют в автоматическом режиме, применяя для управления электромеханическим приводом управления и положением иглы штуцера дистанционно управляемый промышленный контроллер, выполненный на основе микроконтроллера, снабженного радиомодулем. При этом силовой выход контроллера подключают к двигателю упомянутого электромеханического привода, вал которого соединен со шкивом, установленным на игле штуцера. Задачей изобретения, совпадающей с положительным результатом от его применения, является возможность изменять проходное сечение устьевото регулируемого углового штуцера, установленного в составе обвязки скважин пласта c относительно высоким пластовым давлением, в автоматическом режиме. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту на Крайнем Севере. Способ автоматического поддержания плотности нестабильного газового конденсата с применением аппаратов воздушного охлаждения - АВО в установках низкотемпературной сепарации газа включает очистку газоконденсатной смеси от механических примесей и ее разделение на газ и смесь нестабильного газового конденсата - НГК с водным раствором ингибитора – ВРИ. НГК подают насосом в магистральный конденсатопровод – МКП. Для управления плотностью НГК автоматизированная система управления технологическими процессами - АСУ ТП осуществляет ее контроль и одновременно контролирует температуру газа в низкотемпературном сепараторе. АСУ ТП установки генерирует сообщение оператору и/или ИУС промысла и предприятия о необходимости изменения режима работы установки и переходе к автоматическому поиску его новых параметров, когда температура в низкотемпературном сепараторе достигнет своего предельно допустимого верхнего значения при том, что АВО задействованы на 100% своей холодопроизводительности. АСУ ТП изменяет перепад давления на КР перед низкотемпературным сепаратором, регулируя степень дросселирования газоконденсатной смеси на нем либо путем увеличения или уменьшения расхода добываемой газоконденсатной смеси по установке. Техническим результатом является повышение надежности и безопасности эксплуатации МПК. 4 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для оценки скорости коррозионного износа внутренней стенки трубопроводов и технологического оборудования. Изобретение может быть использовано в нефтяной, газовой, химической и других отраслях промышленности. Образец-свидетель выполнен в виде шайбы, внутренняя поверхность которой имеет вогнутую форму с радиусом кривизны, соответствующей радиусу кривизны внутренней поверхности трубопровода, образец размещается в бобышке с отверстием, приваренной к внешней поверхности трубопровода, при этом нижняя часть образца-свидетеля устанавливается на одном уровне с внутренней стенкой трубопровода. Небольшой размер образца-свидетеля и небольшая его масса, позволяют с высокой точностью измерять потерю массы образца-свидетеля за время его экспозиции, а значит с высокой точностью контролировать скорость коррозии. 1 ил.

Изобретение относится к нефтегазовой промышленности и может быть использовано для повышения производительности скважин, работающих с накоплением жидкостных и песчаных пробок на забое. Способ эксплуатации скважины содержит следующие последовательные стадии. Сначала производят удаление жидкостной и песчаной пробок путем дозированной подачи пенообразователя на забой скважины. Пенообразователь закачивают в затрубное пространство на устье скважины без спуска дополнительных трубок на забой в количестве, рассчитанном по следующему математическому выражению: Мпо=mудπR2(L+(Pпл-ΔPг-Pу)/(cos(α)ρжg)), где Мпо - количество пенообразователя, необходимое для вспенивания всей жидкости, накопленной в скважине, кг; mуд - количество пенообразователя, необходимое для вспенивания 1 м3 жидких примесей в скважине, кг/м3; R - внутренний радиус эксплуатационной колонны скважины, м; L - длина скважины от нижнего края лифтовой колонны до текущего забоя, м; Pпл - пластовое давление, приведенное к нижнему краю лифтовой колонны, Па; ΔPг - перепад давления, обусловленный весом столба газа в скважине, может быть рассчитан по барометрической формуле, Па; Ру - давление на устье скважины, Па; α - угол отклонения ствола скважины от вертикали, град; ρж - плотность воды, кг/м3; g - ускорение свободного падения, м/с2. Затем запускают скважину в работу с расходом газа, обеспечивающим вынос примесей из скважины на установку утилизации ее продукции. После снижения концентрации примесей в газовом потоке до допустимых значений скважину переводят в работу на газовый промысел. Стабильный режим скважины обеспечивается путем постоянной подачи пенообразователя с расходом, рассчитываемым по следующему математическому выражению: Qпо =mуд(qв+ qк), где Qпо - расход пенообразователя, необходимый для поддержания стабильной работы скважины, кг/сут; mуд - количество пенообразователя, необходимое для вспенивания 1 м3 жидкости в скважине, кг/м3; qв - расход жидких примесей, поступающих в скважину из пласта, м3/сут; qк - расход жидких примесей, конденсирующихся из паровой фазы в газовом потоке при его движении по лифтовой колонне, м3/сут. Предлагаемый способ позволяет эффективно удалять жидкостные и песчаные пробки с забоя скважины и обеспечивает ее дальнейшую работу без накопления жидкости. 1 ил., 1пр.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для определения коэффициентов сепарации установок очистки флюидов, а также сепараторов, предназначенных для контроля содержания примесей в потоке флюида. Способ определения коэффициента сепарации включает подачу имеющего примеси флюида в два сепаратора, установленные последовательно по ходу его движения. При этом флюид в сепараторы подают в течение заданного интервала времени, необходимого для накопления достаточного для измерений количества уловленной сепараторами примеси, после завершения которого измеряют количество примеси в первом и втором по ходу движения флюида сепараторах. После этого подают флюид с теми же расходом и содержанием в нем примесей в обход первого сепаратора во второй в течение другого заданного интервала времени, необходимого для накопления в нем достаточного для измерений количества уловленной примеси, после завершения которого измеряют это количество примеси и рассчитывают коэффициенты сепарации первого и второго сепараторов по формулам: . Техническим результатом является повышение точности определения коэффициентов сепарации. 1 пр.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для обоснования технологических режимов газовых промыслов, включающих системы добычи и подготовки газа к транспорту. Технический результат - увеличение объемов добычи газа за счет улучшения условий эксплуатации газовых скважин и технологического оборудования и обеспечение безопасной работы газового промысла. По способу создают газодинамическую модель системы добычи газа, объединяющую скважины с газосборной сетью промысла. В эту модель вводят результаты промысловых исследований по каждой скважине в виде зависимостей давления газа в скважинах от расхода газа. После этого модель настраивают на фактические параметры работы системы добычи газа за предыдущий период. Задают пластовое давление по каждой скважине и определяют давление на входе системы подготовки газа к транспорту при различных отборах газа с промысла в соответствии с фактическими данными предыдущего периода работы промысла. При этом определяют положение регулируемых дросселей в обвязке скважин из условия обеспечения минимальных потерь пластовой энергии при соблюдении геолого-технических ограничений для безопасной эксплуатации скважин и газосборной сети. Получают газодинамическую характеристику системы добычи газа. Создают газодинамическую модель системы подготовки газа к транспорту, объединяющую установки очистки, осушки, компримирования и внутрипромыслового транспорта газа, которую, как и предыдущую газодинамическую модель, настраивают на фактические параметры работы системы подготовки газа к транспорту за предыдущий период. Задают давление на выходе данной системы и определяют давление на ее входе при различных отборах газа с промысла, определяя положение регулирующих элементов из условия обеспечения максимальной добычи газа при минимальных потерях пластовой энергии и соблюдении геолого-технологических ограничений, обеспечивающих безопасную эксплуатацию упомянутых установок. Получают газодинамическую характеристику системы подготовки газа к транспорту, которую вместе с газодинамической характеристикой системы добычи газа представляют на одном графике. По точке пересечения кривых определяют максимальный технологический режим газового промысла. Этот режим включает давление на входе системы подготовки газа к транспорту и объем добычи газа с соответствующими им параметрами работы скважин, газосборной сети, установок очистки, осушки, компримирования, внутрипромыслового транспорта газа в период пиковых отборов газа при обеспечении безопасной эксплуатации упомянутых скважин, сетей и установок. 3 ил.

Устройство для удаления пластовой жидкости из газовой скважины относится к оборудованию для эксплуатации газовых скважин и предназначено для удаления пластовой жидкости из газовых скважин. Обеспечивает повышение надежности работы устройства. Сущность изобретения: устройство состоит из пакера с хвостовиком, на нижнем конце которого телескопически установлен патрубок, обладающий положительной плавучестью, с перфорированной перегородкой на нижнем конусе. В осевом канале хвостовика установлен кольцевой поршень с рядом радиальных отверстий, а в промежутках между ними выполнен ряд продольных отверстий. Кольцевой поршень жестко связан с полым штоком, снабженным в верхней части переводником с внутренней расточкой и патрубком-удлинителем в нижней. Полый шток выполнен с рядом перфорированных отверстий, гидравлически связанных с радиальными отверстиями в кольцевом поршне. Патрубок-удлинитель снабжен конической фаской и полым поплавком, в осевом канале которого установлена перфорированная перегородка с направляющим стержнем, снабженным шаровым клапаном, установленным с возможностью взаимодействия с конической фаской патрубка-удлинителя. 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для подъема порции пластовой жидкости из скважин энергией добываемого газа
Изобретение относится к газодобывающей промышленности и предназначено для предотвращения гидратообразования и удаления жидкости с высокой минерализацией (до 200 г/л) и содержанием газового конденсата в смеси до 50% с забоя низкотемпературных скважин, преимущественно на поздней стадии разработки месторождений
Изобретение относится к нефтегазодобывающей промышленности и предназначено для удаления жидкости с минерализацией до 200 г/л и содержанием газового конденсата в смеси до 50% с забоя низкотемпературных скважин, преимущественно на поздней стадии разработки месторождений

 


Наверх