Патенты автора Бушуев Вячеслав Максимович (RU)

Изобретение относится к композиционным материалам C/C-SiC для элементов тормозов, таких как тормозные диски. Тормозное устройство состоит из нескольких контактирующих между собой элементов с двумя рабочими поверхностями трения, выполненных из композиционного материала, содержащего каркас объемной структуры из углеродных волокон и матрицу, включающую в себя первую фазу, прилегающую к армирующим волокнам и содержащую пироуглерод, вторую жаропрочную фазу, полученную, по крайней мере, частично за счет пиролиза материала-предшественника в жидком состоянии, и фазу карбида кремния, полученную в процессе силицирования. Фаза карбида кремния с большим его содержанием расположена на ограниченной глубине, начиная от рабочей поверхности трения. Контактирующие между собой элементы установлены с чередованием в них отличающихся содержанием карбида кремния композиционных материалов; при этом содержание углеродных волокон в материалах со стороны поверхностей трения существенно меньше, чем в материале сердцевины. Композиционный материал, имеющий со стороны контактных поверхностей меньшее содержание карбида кремния, может дополнительно содержать нитрид бора гексагональной структуры. Способ изготовления элементов тормозного устройства включает формирование из углеродных волокон каркаса объемной структуры и уплотнение его углерод-карбидокремниевой матрицей. Каркас формируют с большим содержанием углеродных волокон в сердцевине. Для получения углеродной матрицы формируют межфиламентную пироуглеродную фазу и/или пироуглеродное покрытие на углеродных волокнах, затем каркас пропитывают суспензией частиц термопластичного полимера, не дающего при пиролизе коксового остатка, размером не более преобладающего размера пор в каркасе рабочих слоев и более преобладающего размера пор в каркасе сердцевины изделия, после чего каркас пропитывают коксообразующим связующим, формуют углепластиковую заготовку, производят ее карбонизацию и насыщение пироуглеродом в среде метана термоградиентным методом с передвижением зоны пиролиза с температурой в зоне 980±20°С с переменной скоростью по толщине заготовки элемента в зависимости от требуемой плотности материала сердцевины, материалов со стороны его рабочих поверхностей и на границе между ними. Перед силицированием заготовки в порах материала формируют кокс или наноуглерод, а силицирование проводят паро-жидкофазным методом при первоначальном массопереносе кремния в поры материала по механизму капиллярной конденсации его паров в интервале температур 1300-1600°С с последующим нагревом и выдержкой при 1700-1850°С. Техническим результатом изобретения является повышение комфортности торможения при одновременном снижении затрат и длительности цикла изготовления тормозных элементов. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл., 8 пр.

Заявлены способы формирования толстостенных многослойных тканых оболочек цилиндрической или конической формы с малым углом конусности, которые заключаются в наработке на установленной в круглоткацкую машину формообразующей оправке переплетением систем нитей основы, формирующих осевое армирование, систем нитей перевязки, образующих радиальное армирование, и уточных нитей, прокладываемых в волновой зев между верхним и нижним настилами нитей основы, формирующих кольцевое армирование, причём при формировании опушки ткани в ее наружный слой или слои вводят дополнительную систему нитей основы, или между формообразующей оправкой и формируемой оболочкой вводят дополнительную систему нитей, не связанную с тканью, которые после съема оболочки с оправки удаляют, при этом количество нитей основы в этой системе выбирают в зависимости от геометрии формируемой оболочки с таким расчетом, чтобы опушка ткани поддерживалась перпендикулярной к поверхности оправки и не имела высокого уровня остаточных напряжений. 2 н.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к композиционным материалам C/C-SiC для элементов тормозов, таких как тормозные диски. Тормозное устройство состоит из нескольких элементов с двумя рабочими поверхностями трения, выполненных из композиционного материала на основе дискретных по длине углеродных волокон и матрицы, включающей в себя первую фазу, расположенную вблизи армирующих волокон и полученную за счет пиролиза материала-предшественника в жидком состоянии, вторую фазу в виде пироуглерода и фазу карбида кремния, полученную в процессе силицирования. В нем элементы со стороны их рабочих поверхностей выполнены из материалов с отличающимся содержанием карбида кремния или в каждом из элементов материал с одной из рабочих поверхностей трения имеет большее содержание карбида кремния, чем с другой; при этом дискретные по длине углеродные волокна композиционного материала фрагментированы по толщине вплоть до размеров филаментов, а фаза карбида кремния с большим ее содержанием расположена на ограниченной глубине элемента, начиная от рабочей поверхности трения, при содержании ее в сердцевине элемента не более 10 об.%. Способ изготовления элементов тормозного устройства включает приготовление пресс-массы на основе дискретных по длине углеродных волокон и коксообразующего связующего, формование углепластиковой заготовки прессованием, ее карбонизацию, насыщение пироуглеродом и силицирование. При этом для приготовления пресс-массы используют фрагментированные по толщине, вплоть до размеров филаментов, дискретные по длине углеродные волокна, объединенные механизированным методом в мат с преимущественной их ориентацией в нем перпендикулярно его толщине, насыщение пироуглеродом производят в среде метана термоградиентным методом с передвижением зоны пиролиза с температурой в зоне 980±20°С с переменной скоростью по толщине заготовки элемента в зависимости от требуемой плотности материала сердцевины, материалов со стороны его рабочих поверхностей, и на границе между ними, изменяемой, например, в пределах 0,125-0,25 мм/ч по толщине сердцевины, в пределах от 0,5 мм/ч до скорости, соответствующей «проскоку» зоны пиролиза - по толщине материалов со стороны его рабочих поверхностей и в пределах от 1,0 до 0,25 мм/ч - на границе между ними; при формировании карбидокремниевой матрицы перед силицированием заготовки в порах материала формируют кокс путем пропитки коксообразующим связующим с последующей карбонизацией и/или наноуглерод путем выращивания его в порах материала каталитическим газофазным методом или путем пропитки суспензией наноразмерных частиц углерода, а силицирование проводят паро-жидкофазным методом при первоначальном массопереносе кремния в поры материала по механизму капиллярной конденсации его паров в интервале температур 1300-1600°С с последующим нагревом и выдержкой при 1700-1850°С. Техническим результатом изобретения является повышение комфортности торможения. 2 н.п. ф-лы, 1 табл.

Изобретение относится к абразиво- и окислительностойким материалам, предназначенным для эксплуатации в условиях высоких температур, теплового удара, окислительной среды и абразивного воздействия. Композиционный материал выполнен на основе каркаса объемной структуры и дисперсно-упрочненной нано- и/или ультрадисперсными частицами тугоплавких соединений углеродной или углерод-керамической матрицы. В нем между рядами углеродных стержней горизонтального направления и в ячейках, образованных углеродными стержнями горизонтального и вертикального направлений, расположен нетканый углеродный волокнистый материал из фрагментированных по длине и толщине волокон, а нано- и/или ультрадисперсные частицы расположены между волокнами нетканого материала и на его поверхности и могут быть расположены на поверхности углеродных стержней. Для получения композиционного материала ряды углеродных стержней горизонтального направления со сформированным на их поверхности покрытием из нано- и/или ультрадисперсных частиц или без такового выкладывают между металлическими стержнями вертикального направления, чередуя их выкладку с нанизыванием на металлические стержни вертикального направления заготовок нетканого углеродного волокнистого материала, предварительно пропитанных суспензией нано- и/или ультрадисперсных частиц. После набора пакета требуемой высоты его подпрессовывают перфорированной плитой, через отверстия которой проходят металлические стержни вертикального направления, после чего металлические стержни заменяют на углеродные с покрытием из нано- и/или ультрадисперсных частиц или без такового. Техническим эффектом изобретений является повышение срока службы композиционного материала сравнительно толстостенных изделий, предназначенных для длительной работы под воздействием абразивной и окислительной среды (или кратковременно, но в особо сложных условиях эксплуатации). 2 н.п. ф-лы, 8 ил.

Изобретение относится к текстильной промышленности, в частности к полым многослойным тканым каркасам в качестве армирующих элементов композиционных материалов в изделиях с обеспечением возможности задания направления их вращения вокруг своей оси при полете. Полый многослойный тканый каркас объемной структуры выполнен из уточных и основных нитей. Он состоит из внутренней и наружной тканых оболочек, с чередующимися между собой кольцевыми углублениями и выступами соответственно со стороны их наружной и внутренней поверхности, соединенных между собой за счет того, что в кольцевые углубления внутренней оболочки входят кольцевые выступы наружной оболочки и наоборот кольцевые ее выступы входят в кольцевые углубления наружной оболочки. При этом нити основы сами по себе, или с расположенными на ней стороны наружной поверхности цепочками точечных уплотнений, отклонены от образующей наружной оболочки в ту или иную сторону под углом до 10 градусов. Изобретение также относится к способу изготовления каркаса указанной структуры. Изобретение позволяет создать тканый каркас, при использовании которого в качестве армирующего элемента композиционных материалов в изделиях в форме тел вращения обеспечивается возможность задания направления их вращения, с сохранением высокой прочности композита вдоль образующей изделия. 2 н. и 1 з.п. ф-лы, 4 ил.

Заявлен способ формирования цельнотканого многослойного каркаса с помощью натяжного устройства для формирования цельнотканых многослойных каркасов некруглого сечения с равномерным распределением в них волокон, который включает наработку на установленной в круглоткацкую машину формообразующей оправке круглого сечения, при этом каркас нарабатывают по внутренней поверхности с периметром, равным периметру оправки некруглого сечения, оставляя от его опушки концы нитей основы длиной, необходимой для закрепления их прижимными элементами натяжного устройства, и натяжение за указанные нити основы, возникающее при продвижении формообразующей оправки некруглого сечения внутрь каркаса круглого сечения. 2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к композиционным материалам, в частности, к углерод-углеродным, углерод-керамическим композиционным материалам, а также к углепластикам и предназначено для использования в авиационной, аэрокосмической и других отраслях промышленности. Объёмно-армированный композиционный материал на основе углеродной, углерод-керамической или полимерной матрицы и стержневого каркаса из углеродных волокон, состоящего из расположенных по его высоте рядов стержней горизонтального и стержней вертикального направлений. Причем в нём между рядами стержней горизонтального направления расположены пронизанные вертикальными стержнями слои нетканого волокнистого материала из фрагментированных по длине и толщине углеродных волокон, заполняющих образованные стержнями ячейки, где каркас подпрессован в вертикальном направлении прижимной плитой, в которой выполнены перфорации для прохода углеродных стержней вертикального направления. Способ композиционного материала включает изготовление армирующего каркаса стержневого типа из углеродных волокон и формирование углеродной, углерод-керамической или полимерной матрицы, в котором при изготовлении каркаса на вертикальные стержни нанизывают заготовки из углеродных волокон, чередуя нанизывание с укладкой горизонтального ряда углеродных стержней. Причем в качестве заготовок из углеродных волокон используют нетканый материал на основе фрагментированных по длине и толщине углеродных волокон, указанные заготовки нанизывают на металлические стержни с последующим - после полного набора горизонтальных рядов - замещением на углеродные стержни. После чего подпрессовывают каркас в вертикальном направлении прижимной плитой, в которой выполнены перфорации для прохода стержней вертикального направления, при этом толщину заготовок из нетканого волокнистого материала выбирают с таким расчётом, чтобы после подпрессовки каркаса нетканый материал полностью заполнил ячейки, образованные стержнями горизонтального и вертикального направлений. Техническим результатом заявленного изобретения является разработка композиционного материала и способа его получения, обеспечивающих повышение физико-механических характеристик, а также повышение его эрозионной стойкости без существенного повышения затрат и усложнения технологии изготовления. 2 н.п. ф-лы, 7 ил., 1 табл., 4 пр.

Изобретение относится к композиционным материалам C/C-SiC для элементов тормозов, таких как тормозные диски и/или тормозные башмаки. Элемент тормозного устройства состоит из сердечника, выполненного из УУКМ, и окружающих его с торца рабочих слоев фрикционного материала, содержащего углеродные волокна, расположенную вблизи них первую фазу в виде пироуглерода, затем вторую фазу из углерода и/или керамики, получаемых из жидкого предшественника, и карбид кремния, получаемый в процессе силицирования. Объемное содержание волокон в УУКМ сердечника в 2-4 раза выше, чем во фрикционном материале, и они (волокна) входят в состав углеродной ткани и максимально уплотнены углеродной матрицей; при этом углеродные волокна фрикционного материала дискретны по длине и фрагментированы по толщине, вплоть до филаментов, и часть их входит в УУКМ сердечника. Фрикционный материал сердечника элемента тормозного устройства может содержать в своем составе наноразмерный карбид кремния. Способ изготовления элемента тормозного устройства включает формирование каркаса из углеродных волокон и уплотнение его матричным материалом, первой стадией которого является уплотнение каркаса пироуглеродом из газовой фазы вакуумным изотермическим методом, второй стадией - уплотнение углеродом и/или керамическим материалом из жидкого прекурсора путем пропитки им заготовки и термообработки, третьей стадией - формирование в порах фрикционного материала (вблизи рабочей поверхности элемента тормозного устройства) карбида кремния, получаемого в процессе силицирования заготовки путем обработки ее в парах кремния. При этом каркас со стороны рабочих поверхностей элемента тормозного устройства изготавливают из иглопробивного материала плотностью 0,15-0,36 г/см3 на основе дискретных по длине и фрагментированных по толщине, вплоть до размеров филаментов, углеродных волокон, а сердцевину каркаса (по его толщине) изготавливают плотностью 0,6-0,9 г/см3 на основе слоев углеродной ткани; при этом иглопробивной волокнистый материал соединяют с пакетом из слоев ткани углеродными нитями, осуществляя это иглопробивным методом, уплотнение каркаса пироуглеродом проводят до достижения УУКМ сердечника открытой пористости не более 15%, после чего доуплотняют его углеродной матрицей до максимально возможной плотности для данного типа материала, а силицирование осуществляют паро-жидкофазным методом. Перед силицированием в порах фрикционного материала может быть выращен наноуглерод каталитическим газофазным методом, а при силицировании паро-жидкофазным методом первоначальный массоперенос кремния в поры материала осуществлен по механизму капиллярной конденсации его паров в интервале температур 1300-1550°С. Техническим результатом изобретения является повышение эффективности работы элемента тормозного устройства в условиях интенсивного торможения и влажности окружающей среды без существенного усложнения технологии изготовления. 2 н. и 2 з.п. ф-лы, 1 табл.

Изобретения относятся к текстильной промышленности и предназначены для использования в качестве армирующих элементов в изделиях из композиционных материалов. Заявляются три способа формирования цельнотканой многослойной оболочки переменной толщины. В основе их лежит способ формирования цельнотканой многослойной оболочки переменной толщины, заключающийся в наработке ее на установленной в круглоткацкую машину формообразующей оправке переплетением систем нитей основы, образующих осевое армирование, систем нитей перевязки, образующих радиальное армирование, и уточных нитей, образующих кольцевое армирование, с чередованием слоев из уточных нитей и нитей основы. При этом по одному из вариантов увеличение толщины тканой оболочки осуществляют путем разделения систем нитей основы осевого армирования на части и добавления дополнительных уточных слоев, а последующее снижение ее толщины - путем соединения разделенных частей систем нитей основы и исключения дополнительно введенных уточных слоев, по другому варианту уменьшение толщины тканой оболочки осуществляют путем соединения систем нитей основы соседних слоев и исключения уточных слоев между соединяемыми системами, а последующее увеличение ее толщины - путем разделения соединенных систем нитей основы и ввода уточных слоев между соединенными ранее системами. Третий вариант предусматривает плавное уменьшение толщины тканой оболочки, с разнесением по ее длине. Изобретения позволяют упростить способ формирования цельнотканых оболочек переменной толщины и придать им и изготовленным на их основе изделиям из композиционных материалов высоких потребительских свойств, в частности высокую прочность. 3 н.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к текстильной промышленности, в частности к полым многослойным тканым каркасам, предназначенным для создания армирующих элементов композиционных материалов, и способу их изготовления. Полый многослойный тканый каркас объемной структуры, формируемый на круглоткацкой машине путем переплетения уточных нитей и систем основных нитей, имеет структуру, в которой все нити основы сами по себе или с расположенными на нем со стороны наружной поверхности и/или в глубине цепочками точечных уплотнений либо разряжений отклонены от образующей каркаса в ту или иную сторону под углом 10 градусов. Изобретение позволяет создать такое конструктивное исполнение тканого каркаса, которое при использовании его в качестве армирующего элемента композиционных материалов в изделиях в форме тел вращения обеспечивает возможность задания направления их вращения. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к текстильной промышленности, в частности к тонкостенным тканым оболочкам, предназначенным для создания армирующих элементов композиционных материалов. Способ изготовления тонкостенной тканой оболочки заключается в наработке ее из систем основных нитей и нитей утка на установленной в круглоткацкую машину формообразующей оправке. Он предусматривает одновременную наработку тканой оболочки и бандажной ткани с помощью одного челнока. При этом в ходе наработки тканой оболочки и бандажной ткани между ними прокладывают не связанные с полотнами витки утка, облегчающие их последующее разделение. Изобретение позволяет упростить способ изготовления тонкостенных тканых оболочек на машинах круглого ткачества. 2 пр., 1 ил.

Изобретение относится к текстильной промышленности, в частности к толстостенным цельнотканым оболочкам, предназначенным для использования в качестве армирующих элементов изделий из композиционных материалов. Способ формирования многослойной тканой оболочки заключается в наработке ее из уточных нитей и систем основных нитей на установленной в круглоткацкую машину формообразующей оправке. Чередующиеся слои нитей основы и нитей утка осуществляют прямоугольное армирование соответственно в направлении образующей и кольцевом направлении оболочки, образуя в ходе ее наработки опушку ткани. При этом соединение слоев нитей основы и нитей утка на всю толщину оболочки производят тремя системами перевязочных нитей. Причем прокладку каждой из них в опушке ткани производят с таким расчетом, чтобы они поочередно разделяли соседние уточные ряды. При этом при прокладывании каждого очередного утка в ряду система перевязочных нитей перемещается в опушке ткани только на один слой. Изобретение позволяет снизить обрывистость перевязочных нитей, а также уменьшить образование петель перевязочных нитей. 2 ил., 1 пр.

Изобретение относится к текстильной промышленности, в частности к двух- и трехслойным цельнотканым оболочкам, предназначенным для создания армирующих элементов композиционных материалов. Способ изготовления двух- и трехслойных цельнотканых оболочек заключается в наработке их из уточных нитей и систем основных нитей на установленной в круглоткацкую машину формообразующей оправке. При этом при наработке оболочек, в процессе тканеформирования производят периодическую протяжку перевязочных нитей основы вдоль образующей оболочек через несколько рядов уточных нитей со стороны их внутренней и/или наружной поверхностей. Изобретение обеспечивает повышение прочности вдоль образующей и отсутствие выступов на внутренней и/или наружной поверхности изделий из композиционных материалов тканых оболочек. 2 ил., 2 пр.

Изобретение относится к текстильной промышленности, в частности к полым многослойным тканым заготовкам, предназначенным для создания армирующих элементов композиционных материалов. Предложена полая многослойная тканая заготовка объемной структуры, формируемая на круглоткацкой машине путем переплетения уточных нитей и систем основных нитей. При этом заготовка имеет на поверхности и/или по ее толщине цепочки точечных уплотнений, расположенные по требуемым траекториям с необходимыми углами относительно образующей заготовки, имитирующими саржевый эффект и обеспечивающими условия для изготовления изделий из композиционного материала в форме тела вращения с возникновением крутящего момента и возможностью вращения вокруг своей оси с заданным направлением вращения. Также предложен способ изготовления указанной тканой заготовки. Предложенное изобретение позволяет создать такое конструктивное исполнение тканой заготовки, которое при использовании ее в качестве армирующего элемента композиционных материалов в изделиях в форме тел вращения обеспечивает возможность их вращения вокруг своей оси при полете в атмосфере с заданием направления вращения и позволяет сохранить при этом их высокую прочность. 2 н.п. ф-лы, 2 ил.
Изобретение относится к текстильной промышленности, в частности к толстостенным цельнотканым оболочкам, предназначенным для использования в качестве армирующих элементов изделий из композиционных материалов. Способ изготовления многослойной тканой оболочки включает наработку ее из уточных нитей и систем основных нитей на установленной в круглоткацкую машину формообразующей оправке и съем с указанной оправки. Причем при наработке тканой оболочки слои нитей основы и слои нитей утка, чередующиеся между собой и осуществляющие прямоугольное армирование в направлении образующей и кольцевом направлении оболочки, соединяют между собой перевязочными нитями. При этом перед съемом наработанной тканой оболочки с формообразующей оправки производят рассредоточенную по наружной поверхности оболочки подрезку наружного слоя утков, после чего тканую оболочку выдерживают на формообразующей оправке в течение не менее суток. Изобретение позволяет изготавливать нарабатываемые на круглоткацкой машине тканые оболочки в «задел» при сохранении возможности придания им требуемой формы при проведении операции формования на их основе изделий из композиционных материалов.

Изобретение относится к области текстильной промышленности и касается устройства для образования зева ткацкой машины, которое включает подъемный механизм, крючки с рамниками, расположенные на подвижных и неподвижных ножах, и механизм, регулирующий порядок подъема нитей основы. При этом подъемный механизм устройства выполнен в виде набора вставленных в раму одинаковых модулей с сервоприводами подвижных ножей каждого модуля. Модули состоят из двух актуаторов, соединенных связями и приводным валом, неподвижного и направляющего ножей, установленных на верхней и нижней связях соответственно, подвижного ножа на кронштейнах, установленных на платформах актуаторов, крючков, установленных в пазах подвижных, неподвижных и направляющих ножей модуля и выполненных с возможностью включения или выключения их в работу перемещением их с помощью устройства отбора крючков с неподвижного ножа на подвижный нож и наоборот. Изобретение позволяет повысить качество нарабатываемой ткани при упрощении конструктивного исполнения ткацкой машины. 2 ил.
Изобретение относится к углеродным композиционным материалам, изделия из которых предназначены для авиакосмической и химико-металлургической промышленности, работающим при высоких температурах в неокислительных средах. Способ изготовления изделий из углерод-углеродного композиционного материала в форме оболочки, включающий формирование из углеродных волокон каркаса объемной структуры путем наработки его на установленной в круглоткацкую машину формообразующей оправке и насыщение его пироуглеродом из газовой фазы, заключается в том, что наработку каркаса и его насыщение проводят на одной и той же формообразующей оправке из термостойкого материала со сформированным на ней разделительным слоем. В качестве материала разделительного слоя используют газетную бумагу, целлофан, графитовую фольгу, покрытие из термостойкого материала низкой проницаемости. Формообразующую оправку выполняют из материала с КЛТР, превышающим КЛТР формируемого углерод-углеродного композиционного материала. При изготовлении изделий конической или оживальной формы каркас фиксируют на оправке путём выполнения на ней со стороны большего диаметра цилиндрического участка или участка с обратной конусностью или штифтами из термостойкого материала. Изобретение позволяет снизить затраты и цикл на изготовление изделий в виде оболочек конической, цилиндрически-конической и оживальной формы. 1 з.п. ф-лы, 2 пр.

Изобретение относится к конструкциям из углерод-углеродного композиционного материала и может быть использовано в силовых ферменных конструкциях, работающих в безвоздушной среде при высоких температурах. Длинномерная малого диаметра тонкостенная труба, нарабатываемая на круглоткацкой машине, имеет армирование каркасом 3D-структуры. Способ формирования указанного изделия заключается в формировании каркаса 3D-структуры из высокомодульных углеродных волокон на установленной в круглоткацкую машину формообразующей оправке. После проводят насыщение каркаса пироуглеродом термоградиентным методом. При этом в качестве оправки используют трубу из тугоплавкого металла титана или ниобия, на которую перед формированием каркаса наклеивают графитовую фольгу. Изготовленная таким способом труба имеет существенно более высокую прочность на изгиб и межслоевой сдвиг. 2 н.п. ф-лы, 3 пр.

Изобретение предназначено для использования при изготовлении герметичных углеграфитовых материалов, предназначенных для работы в химической, химико-металлургической промышленности, а также в качестве технологической оснастки, используемой в процессе силицирования при изготовлении изделий из углерод-карбидокремниевых композиционных материалов. Техническим результатом является расширение номенклатуры углеграфитовых материалов для использования при изготовлении герметичных изделий и снижение стоимости их изготовления. Способ герметизации изделий из углеграфитовых материалов включает заполнение поверхностных пор пригодного к герметизации материала изделия композицией из порошка углерода или его смеси с карбидом кремния и связующего, формирование на поверхности изделия шликерного покрытия на основе указанной композиции и силицирование изделия путем обработки его в вакууме в парах кремния с их конденсацией непосредственно в порах материала, в том числе на стадии окончательного охлаждения. При этом при заполнении поверхностных пор материала изделия и формировании на его поверхности шликерного покрытия используют композицию из порошков нано- и/или ультрадисперсного углерода или углерода и ультра- и/или мелкодисперсного карбида кремния, или углерода, ультра- и/или мелкодисперсных карбида кремния и кремния и коксообразующего связующего холодного отверждения, а перед силицированием изделия проводят карбонизацию коксообразующего связующего, осуществляемую в едином технологическом процессе с силицированием, которая по времени предшествует силицированию. 2 ил.

Изобретение относится к способам изготовления изделий из углерод-карбидокремниевых композиционных материалов, предназначенных для использования в окислительной среде при высоких температурах. Согласно способу формируют каркас структуры 2,5 d на основе тканевых заготовок из длинномерных жаростойких волокон типа углеродных и карбидокремниевых. При наборе пакета тканевых заготовок между ними прокладывают целлюлозную бумагу. Пакет требуемой толщины прошивают углеродной или карбидокремниевой нитью и пропитывают водным раствором соединения, катализирующего процесс роста углеродных нанотрубок или волокон. Затем каркас сушат и пропитывают коксообразующим связующим, после чего формуют пластиковую заготовку, придавая тем самым форму и размеры будущему изделию. Полученную пластиковую заготовку карбонизуют в инертной среде при нагреве до 800-850°С, обеспечивая образование кокса и рост углеродных нанотрубок или волокон в межволоконных порах каркаса и в межфиламентных порах волокон, а также в порах кокса. Затем, при необходимости, заготовку из карбонизованного пластика подвергают высокотемпературной обработке и насыщают пироуглеродом. Для получения карбидокремниевой матрицы проводят силицирование заготовки паро-жидкофазным методом. Техническим результатом является повышение эксплуатационных характеристик тонкостенных, крупногабаритных и сложнопрофильных изделий. 2 н. и 1 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к устройствам для изготовления изделий из углерод-карбидокремниевых материалов со специальными свойствами, предназначенных для использования в химической, химико-металлургической промышленности, а также в авиатехнике. Устройство для силицирования паро-жидкофазным методом содержит основные нагреватели, расположенные вокруг наружной реторты, донный нагреватель для подогрева тиглей с кремнием, внутреннюю реторту замкнутого объема с размещенной внутри нее силицируемой заготовкой и тиглями с кремнием, сконсолидированными в ее нижней части, реактор проточного типа, теплоизоляцию из пористых углеграфитовых материалов и пневмо-газо-вакуумную систему. Наружная и внутренняя реторты выполнены из нескольких по высоте частей и расположены коаксиально друг другу с зазором, а наружная реторта снабжена патрубками для соединения межретортного зазора с пневмо-газо-вакуумной системой. Основные нагреватели устройства имеют в нижней части менее высокотемпературную зону, расположенную напротив тиглей с кремнием; при этом основные нагреватели и донный нагреватель снабжены автономными источниками питания. Нижняя часть основных нагревателей предпочтительно имеет мощность в 1,09-1,15 раза меньше, чем их верхняя часть. Технический результат изобретения – расширение технологических возможностей изготовления изделий со специальными свойствами: практически без свободного кремния, а также низкой проницаемости, что позволяет расширить области их применения; при этом упростить изготовление и сохранить эксплуатационные характеристики изделий. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способам защиты углеродсодержащих материалов от окисления и касается защиты от окисления крупногабаритных изделий. Согласно способу заготовку из пористого углеродсодержащего композиционного материала подвергают предварительному силицированию жидкофазным методом при нагреве до 1650-1750°С при давлении в реакторе 600-760 мм рт.ст. в аргоне с использованием нитрида кремния в качестве прекурсора жидкого кремния. Оставшийся некарбидизованным кремний отгоняют в вакууме при температуре 1800-1850°С. Операции силицирования и отгонки свободного кремния из пор материала осуществляют в едином технологическом процессе. Затем в порах материала заготовки одним из известных методов формируют высокопористый углерод, предпочтительно, путем выращивания наноуглерода в форме частиц, волокон или трубок. После этого на поверхности заготовки формируют шликерное покрытие на основе диборидов тугоплавких металлов и химически активного к кремнию компонента(ов): нанодисперсного углерода, карбидов молибдена (МоС и Mo2C) или Mo5Si3, или смесь углерода с молибденом с размером частиц до 5 мкм. Производят окончательное силицирование паро-жидкофазным методом. Поверх полученного покрытия формируют покрытие на основе оксидов тугоплавких металлов. Техническим результатом является повышение надежности защиты углеродсодержащих материалов крупногабаритных изделий от окисления при температурах 2000°С и более при одновременном повышении воспроизводимости получаемых результатов. 1 з.п. ф-лы, 4 пр., 2 табл.

Изобретение относится к области текстильной промышленности и касается формирования каркасов объемной структуры в форме оболочек с фланцем, формируемым методом круглого ткачества, применяемых также в качестве наполнителей композиционных материалов для изделий аэрокосмической техники, судостроения и химико-металлургической промышленности, в частности изделий в виде сосудов, работающих под давлением. Цельнотканая многослойная оболочка из нитей основы и уточных нитей, наработанная на круглоткацкой машине, дополнительно снабжена фланцем, выполненным заодно целое с ней, для расширения области применения тканых оболочек при одновременном повышении их весового совершенства самих по себе, а также изделий из КМ, изготавливаемых на их основе. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области текстильной промышленности и касается формирования каркасов объемной структуры в форме оболочек с ребрами жесткости, формируемых методом круглого ткачества, применяемых также в качестве наполнителей композиционных материалов для изделий аэрокосмической техники, судостроения и химико-металлургической промышленности, в частности изделий в виде сосудов, работающих под давлением. Цельнотканая многослойная оболочка из нитей основы и уточных нитей, наработанная на круглоткацкой машине, имеет выполненные на ее наружной поверхности одно или несколько кольцевых ребер жесткости, выполненных заодно целое с ней. Способ формирования указанного изделия заключается в наработке цельнотканой многослойной оболочки на установленной в круглоткацкую машину формообразующей оправке. При этом при наработке оболочки в зоне кольцевого ребра жесткости производят выводы систем нитей основы по толщине ребра, переплетением которых с кольцевыми витками утка в горизонтальной плоскости нарабатывают многослойное кольцевое ребро заданной толщины и высоты. После этого выведенные нити основы вновь вводят в структуру оболочки для продолжения ее наработки по высоте или наработки из них следующего ребра. Изобретение позволяет повысить весовое совершенство и расширить область применения самой по себе тканой оболочки, а также изготавливаемых на ее основе изделий из композиционных материалов. 2 н.п. ф-лы, 1 ил.

Изобретение относится к химической промышленности и может быть использовано при изготовлении химических реакторов, работающих в условиях вакуума и высоких температур. Футеровка реактора вакуумной высокотемпературной установки состоит из футеровок 14 днища, 15 крышки и боковой футеровки 16 корпуса, содержащих полое герметичное изделие 19 интегральной конструкции, в полости которого расположены контейнеры 18 с теплоизоляционным материалом 17. Полое герметичное изделие 19 оснащено штуцером 20, расположенным на наружной металлической оболочке 2 и предназначенным для вакуумирования и напуска инертного газа. В футеровке 15 крышки и боковой футеровке 16 корпуса полое герметичное изделие 19 расположено с возможностью свободного перемещения. Верхний фланец 3 полого герметичного изделия 19 в боковой футеровке 16 теплоизолирован материалом 21. Каждая из футеровок 14, 15 и 16 дополнительно содержит систему тепловых экранов 23 из углерод-углеродного композиционного материала (УУКМ) или углерод-карбидокремниевого материала (УККМ). В боковой футеровке 16 полое герметичное изделие 19 расположено на днище реактора через демпфирующую прокладку 24, а верхний фланец 3 снабжен ограничителем хода 25 в продольном направлении. Полое герметичное изделие 19 состоит из внутренней 1 и наружной 2 оболочек, соединенных по торцам или концам общими фланцами, а по высоте соединительными элементами в виде втулок или ребер жесткости. Внутренняя 1 и наружная 2 оболочки выполнены соответственно из УУКМ и металла, работоспособного при температуре эксплуатации изделия. Соединительные элементы выполнены из разнородных по составу и термостойкости материалов, включая УУКМ, металлы и пластики, на одном из концов гибкими, в том числе с компенсаторами разницы в удлинениях оболочек 1 и 2. Фланцы выполнены с металлическими законцовками. Технический результат заключается в сохранении герметичности в условиях эксплуатации элементов реактора в различных температурных зонах, снижении количества образующихся газов непосредственно в реакционном пространстве, исключении негативного влияния футеровки. 5 н. и 5 з.п. ф-лы, 9 ил.

Изобретение относится к процессам металлирования паро-жидкофазным методом и предназначено для выбора наиболее оптимальных технологических параметров при разработке новых процессов металлирования и их совершенствовании. Способ определения скорости заполнения пор пористого материала конденсатора конденсатом паров металла в процессе металлирования паро-жидкофазным методом включает обеспечение разницы температур между температурой конденсатора из пористого материала и источника паров металла с более высокой температурой, чем температура упомянутого конденсатора, на одной из стадий процесса металлирования, включающего нагрев, изотермическую выдержку и охлаждение. Под конденсатором устанавливают сборник жидкого конденсата паров металла и создают условия для исключения испарения из него конденсата паров металла. После проведения процесса металлирования определяют привес конденсатора, массу покрытия на конденсаторе, исходя из толщины покрытия, и массу жидкого конденсата паров металла в сборнике. После чего, исходя из объема пор материала конденсатора, времени заполнения пор материала конденсатором и изменения веса конденсатора, вычисляют скорость заполнения пор материала конденсатора конденсатом паров металла по формуле: где v - скорость заполнения пор пористого материала конденсатора, г/(см3×ч); vп и vж - скорость образования твердого, в виде покрытия, и жидкого конденсата паров металла на поверхности не содержащего открытых пор материала конденсатора соответственно, в г/(см2×ч); τобщ - длительность одной из стадий металлирования, на которой создается разница температур между температурами источника паров металла и конденсатора, ч; mк - привес конденсатора, г; mп - масса твердого конденсата паров металла в виде покрытия на поверхности не имеющего открытых пор материала конденсатора, г; mж - масса жидкого конденсата паров металла в сборнике конденсата, г; V - объем пор материала конденсатора, см3; S - площадь поверхности конденсатора из пористого материала, см2. Скорости образования покрытия на конденсаторе и жидкого конденсата паров металла, vп и vж соответственно, определяют при тех же технологических параметрах процесса с учетом толщины покрытия металлирования, что и технологические параметры процесса металлирования конденсатора из пористого материала. В частных случаях осуществления изобретения осуществляют определение скорости заполнения пор пористого материала конденсатом паров кремния. Обеспечивается расширение технологических возможностей способа. 1 з.п. ф-лы.

Изобретение относится к области текстильной промышленности и касается формирования крупногабаритных тонкостенных и толстостенных каркасов объемной структуры полой формы, предназначенных, в частности, для изготовления на их основе различного типа крупногабаритных изделий из композиционных материалов. Полое изделие в виде тканого многослойного полотна замкнутой формы объемной структуры, нарабатываемого на круглоткацкой машине, имеет выполненные на его внутренней и/или наружной поверхности, чередующиеся между собой кольцевые углубления и выступы. Способ формирования указанного изделия заключается в наработке тканого многослойного полотна на установленной в круглоткацкую машину формообразующей оправке. При этом наработку тканого многослойного полотна осуществляют в соответствии с рисунком ткани, в котором заданы места отсутствия уточных нитей на внутренней и/или наружной поверхности полотна. Способ формирования толстостенного полого изделия объемной структуры, в том числе крупногабаритного, предусматривает наработку тканого многослойного полотна замкнутой формы на установленной в круглоткацкую машину формообразующей оправке. При этом вначале нарабатывают полотно с выполненными на его внутренней и/или наружной поверхности, чередующимися между собой кольцевыми углублениями и выступами, изготавливаемое вышеуказанным способом. После этого поверх него, не снимая его с формообразующей оправки, нарабатывают до требуемой толщины изделия одно или несколько полотен указанного типа; причем наработку их осуществляют таким образом, что в кольцевые углубления предыдущего полотна входят кольцевые выступы последующего полотна и, наоборот, кольцевые выступы предыдущего полотна входят в кольцевые углубления последующего полотна. В данном способе каждое тканое многослойное полотно предпочтительно нарабатывают близкой к максимально возможной толщине, лимитируемой максимальным заправочным количеством нитей основы. Изобретение позволяет расширить область применения изделий, нарабатываемых ткачеством на круглоткацкой машине. 3 н. и 1 з.п. ф-лы, 3 ил.

Изобретение предназначено для изготовления изделий из углеродкарбидокремниевых композиционных материалов. Способ силицирования крупногабаритных изделий из углерод-углеродного композиционного материала включает размещение изделия со сформированным на нем шликерным покрытием на основе кремния или его прекурсора и/или тиглей с кремнием в реторте замкнутого объема для силицирования крупногабаритных изделий, удаление из реторты реакторных газов путем вакуумирования и/или подачи инертного газа, нагрев изделия или изделия и тиглей с кремнием в вакууме и/или при атмосферном давлении в парах кремния при температуре паров, превышающей температуру силицируемого изделия, охлаждение в вакууме в парах кремния или в вакууме или при атмосферном давлении в отсутствие паров кремния, разъединение частей реторты и извлечение изделия из реторты. При размещении изделия или изделия и тиглей с кремнием в реторте замкнутого объема между частями реторты устанавливают на термостойкий клей проставки из термостойкого материала низкой проницаемости и обрабатываемого слесарным инструментом, вакуумирование и/или подачу в реторту инертного газа вплоть до обеспечения в ней атмосферного давления проводят через центральное отверстие в крышке реторты, последующие упомянутые нагрев и охлаждение до разъединения частей реторты проводят при низкой проницаемости стыков между частями реторты, а разъединение ее частей проводят слесарным инструментом путем разрезания по толщине промежуточных проставок. Реторта замкнутого объема для силицирования крупногабаритных изделий из углерод-углеродного композиционного материала состоит из нескольких по высоте частей, выполненных из предварительно герметизированного углерод-углеродного композиционного материала, и крышки. Реторта дополнительно снабжена расположенными между ее частями и соединенными с ними на термостойкий клей проставками из подвергнутого герметизации графита или из материала, получаемого прессованием графитовой фольги с ориентацией ее слоев параллельно оси реторты, а крышка реторты выполнена с центральным отверстием. Повышается вероятность получения стабильно высоких результатов по степени равномерности силицирования крупногабаритных заготовок с обеспечением высокой чистоты поверхности силицируемых заготовок, повышением управляемости процессом силицирования и снижением расходов на его проведение. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение может быть использовано при изготовлении конструкций из композиционных материалов. Соединительный элемент полого герметичного изделия интегральной конструкции выполнен из УУКМ на основе низкомодульных углеродных волокон и содержит присоединительный концевой участок 1 и металлическую законцовку, снабженную сильфоном. Сначала на оправке-нагревателе 8 формируют каркас тканепрошивной структуры из углеродной такни на основе низкомодульных углеродных волокон за исключением участков 1 и 2а, на которых слои ткани оставляют не соединёнными. На участке 1 слои ткани отбортовали на фланцевый участок 9. Затем насыщают полученный каркас пироуглеродом термоградиентным методом, подавая ток верхним 10 и нижним 11 токоподводами на оправку-нагреватель 8. Полное насыщение каркаса пироуглеродом производят на такой длине от начала участка 1, при которой его удлинение примерно равно удлинению металлической законцовки. После этого полностью уплотненный пироуглеродом участок механически обрабатывают под формирование шликерного покрытия на основе мелкодисперсного графитового порошка и временного связующего и с одного из его концов выполняют проточку под металлическую законцовку, глубина которой должна быть достаточна для жесткого и герметичного соединения УУКМ и законцовки. На одном из участков законцовки формируют антиадгезионное покрытие, первый слой которого выполняют из графитовой фольги, а второй - из фторопласта или целлофана. Другим участком законцовку вклеивают на термостойкий клей в выполненную проточку. Затем ненасыщенный и недоуплотненный пироуглеродом участки пропитывают коксообразующим связующим, после чего в едином технологическом процессе производят герметизацию участка 2, карбонизацию и насыщение пироуглеродом в вакууме. Обеспечивается герметичность изделия интегральной конструкции, отдельные элементы которого выполнены из материалов с различными коэффициентами термического расширения и при его работе находятся в разных температурных зонах. 2 н.п. ф-лы, 3 ил.

Изобретение предназначено для химической и металлургической промышленности и может быть использовано при изготовлении подшипников, уплотнений и облицовочных плит. Сначала готовят пресс-массу на основе графитового порошка фракции 5-20 мкм в смеси с техническим углеродом, в том числе наноразмерным, и полисилоксанового или полисилазанового связующего. Затем формуют заготовку путем прессования и полимеризации связующего. Полученную заготовку обжигают соответственно при 1000-1200 °С в вакууме или при атмосферном давлении в среде аргона и при 1500-1550 °С и давлении в реакторе не более 36 мм рт.ст. После этого проводят силицирование паро-жидкофазным методом при массопереносе кремния в поры материала по механизму капиллярной конденсации его паров при нагреве с 1300 до 1500 °С при давлении в реакторе не более 36 мм рт.ст. с последующей выдержкой при температуре 1550-1600 °С в течение 1-2 ч и охлаждением в парах кремния. Обжиг заготовки и ее силицирование могут быть проведены в едином технологическом процессе. Обжиг заготовки на основе полисилоксанового связующего может быть проведен при атмосферном давлении с последующим нагревом до 1300 °С. Перед осуществлением массопереноса кремния в поры материала заготовки на основе полисилазанового связующего может быть произведен ее нагрев до 1500-1550 °С и промежуточное охлаждение до 1300 °С при температуре, превышающей температуру паров кремния. Повышаются эксплуатационные характеристики изделий из силицированного графита, а также воспроизводимость получаемых результатов. 3 з.п. ф-лы, 1 табл., 6 пр.
Изобретение относится к космической технике и касается высокочастотных ионных двигателей. Электрод ионного двигателя, содержит равномерно распределенные по поверхности круглой или прямоугольной формы отверстия размером 1,2-4,6 мм и перемычки между ними шириной 0,4-2,4 мм и выполнен из (УУКМ) на основе каркаса слоистой структуры из высокомодульных углеродных волокон и коксо-пироуглеродной матрицы; при этом углеродные волокна (УУКМ) входят в состав однонаправленной ленты толщиной 0,07-0,11 мм и расположены в УУКМ детали под углом 60 или 90 градусов друг к другу для отверстий круглой и квадратной формы соответственно.Технический результат изобретения - повышение ресурса работы ускоряющего электрода и эмиссионного электрода ИОС, а также повышение их прочности и размерной точности, высокой чистоты поверхности и упрощение технологии изготовления. 2 н.п. ф-лы.

Изобретение относится к области получения композиционных материалов на основе углерода и карбида кремния и изделий из них теплозащитного, конструкционного назначений для использования в области космической техники и металлургии. Способ изготовления изделий из керамоматричного композиционного материала включает формирование каркаса из углеродных волокон, пропитку его раствором поликарбосилана в органическом растворителе, формование на их основе углепластиковой заготовки, термообработку ее при 1000-1500°С, формирование в порах полученной заготовки углерода и силицирование ее паро-жидкофазным методом. После термообработки необязательно проводят дополнительные операции пропитки пористой заготовки раствором поликарбосилана, его отверждение и термообработку. В способе используют поликарбосилан с двойными и/или тройными связями при углероде, например полидиметилсилэтин или полидиметилсилэтенсилэтин а в качестве растворителя - непредельные или ароматические углеводороды, при этом в пропиточный раствор добавляют инициатор радикальной полимеризации в количестве 1-1,5% от веса полимера, например азобисизобутиронитрил. Техническим результатом изобретения является повышение работоспособности изделий из УККМ в условиях воздействия окислительной среды, высоких температур и высоких механических нагрузок. 1 табл., 3 пр.

Изобретение относится к конструкционным материалам для машиностроения, химической и металлургической промышленности и может быть использовано при изготовлении опорных и упорных подшипников, подшипников скольжения, торцовых уплотнений насосов, предназначенных для перекачивания жидкостей с абразивными частицами, а также облицовочных плит. Сначала готовят пресс-массу на основе графитового порошка фракции 5-30 мкм или его смеси с техническим углеродом, в том числе наноразмерным, и полимерного фенолформальдегидного связующего, в качестве которого используют раствор жидкого бакелита в изопропиловом спирте условной вязкостью 16 с. Можно использовать графитовый порошок, уплотненный пироуглеродом, или графит с пироуглеродным покрытием. Затем из полученной пресс-массы формуют заготовку путем прессования, полимеризуют связующее и обжигают полученную заготовку. Обожжённую заготовку силицируют паро-жидкофазным методом путем нагрева и выдержки 1-2 ч при 1500-1600°С в парах кремния при температуре паров, превышающей температуру заготовки при нагреве ее с 1300 до 1500°С соответственно на 120-10°С. Нагревать заготовку в интервале 1300-1500°С можно ступенчато с изотермическими выдержками. После этого заготовку охлаждают в парах кремния в отсутствие указанной разницы температур. Температуре 1500°С соответствует графитовый порошок с большей химической активностью к кремнию, а температуре 1600°С – с меньшей. Повышаются эксплуатационные характеристики изделий из силицированного графита, а также воспроизводимость получаемых результатов. 2 з.п. ф-лы, 1 табл.

Изобретение относится к конструкционным материалам для машиностроения, химической и металлургической промышленности и может быть использовано при изготовлении опорных и упорных подшипников, подшипников скольжения, торцовых уплотнений насосов, предназначенных для перекачивания жидкостей с абразивными частицами, а также облицовочных плит. Сначала готовят пресс-массу на основе смеси графитового порошка фракции 30-63 мкм и фракции 1-10 мкм с содержанием последней 30-40% от объема порошковой смеси и полимерного фенол-формальдегидного связующего, в качестве которого используют раствор жидкого бакелита в изопропиловом спирте условной вязкостью 20 секунд. Затем из полученной пресс-массы формуют заготовки, полимеризуют связующее и обжигают заготовку. Обожжённую заготовку силицируют парожидкофазным методом путем нагрева и выдержки 1-2 ч при 1650-1750 °С в парах кремния при температуре паров, превышающей температуру заготовки при нагреве ее с 1300 до 1650 °С соответственно на 150-10 градусов. Нагревать заготовку в интервале 1300-1650 °С можно ступенчато с изотермическими выдержками. После этого заготовку охлаждают в парах кремния в отсутствие указанной разницы температур. Температуре 1650 °С соответствует графитовый порошок фракции 30-63 мкм с меньшей степенью графитации, а температуре 1750 °С – с большей. Повышаются эксплуатационные характеристики изделий из силицированного графита, а также воспроизводимость получаемых результатов. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области получения углерод-углеродных композиционных материалов (УУКМ) и изготовления изделий из них, в частности УУКМ на основе дискретных по длине армирующих углеродных волокон и коксопироуглеродной матрицы. УУКМ содержит армирующий наполнитель, выполненный из иглопробивного материала, состоящего из фрагментированных по толщине, вплоть до филаментов, дискретных по длине углеродных волокон, при этом пироуглерод в коксопироуглеродной матрице равномерно распределен по объему материала. Способ получения УУКМ включает разрезку углеродных волокон по длине, их фрагментацию по толщине вплоть до образования филаментов, формирование мата и его иглопробивание, пропитку коксообразующим связующим, формование углепластиковой заготовки, ее карбонизацию и насыщение пироуглеродом из газовой фазы термоградиентным методом. Изобретение позволяет получить УУКМ и изделия из него, в том числе толстостенные, имеющие высокую равномерность свойств по объему, а также повышенный уровень прочностных характеристик без существенного увеличения затрат на изготовление. 2 н.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к способу и реактору для металлирования крупногабаритных заготовок в высокотемпературном реакторе установки для объемного металлирования паро-жидкофазным, альтернативным жидкофазным и комбинированным методами. Способ включает вакуумирование реактора в холодном состоянии и при нагреве в ходе проведения процесса металлирования. Причем в ходе проведения процесса металлирования осуществляют раздельное вакуумирование теплоизоляционного материала, размещенного в герметичных камерах, образованных герметичными элементами футеровки крышки, корпуса и днища реактора и самими элементами реактора, и рабочего реакторного пространства, а после завершения процесса металлирования вплоть до очередного его проведения производят консервацию теплоизоляционного материала путем создания в герметичных камерах атмосферы инертного газа с избыточным давлением 0,025-0,03 атм, путем подачи инертного газа в герметичные камеры одновременно с подачей воздуха в рабочий объем реактора и поддержания в камерах и рабочем объеме реактора близкого по значению давления до создания в них атмосферного давления, с последующим созданием в герметичных камерах избыточного давления. Раскрыт также реактор, в котором футеровка корпуса, крышки и днища реактора установки для металлирования заготовок выполнена из углеродного порошкового и/или волокнистого наполнителя низкой теплопроводности, расположенного в контейнерах, образованных обечайками и/или чашами из армированного углеродными волокнами композиционного материала на основе углеродной или углерод-карбидметаллической матрицы типа C-SiC, C-TiC и соответствующими корпусными деталями реактора. Футеровка выполнена из двух групп обечаек и чаш, образующих с соответствующими корпусными деталями реактора камеры для размещения в них контейнеров, заполненных теплоизоляционным материалом. Также раскрыт способ изготовления углеродсодержащей футеровки упомянутого реактора. Обеспечивается объемный характер металлирования карбидообразующими металлами крупногабаритных заготовок. 3 н.п. ф-лы, 5 ил.

Изобретение относится к высокотемпературному реактору установки для объемного металлирования заготовок из пористых материалов. Реактор содержит корпус с футеровкой в виде засыпки углеродного порошка и/или укладки волокнистого углеродного наполнителя низкой теплопроводности в контейнеры из плотного термостойкого материала, вертикально расположенные по отношению к днищу реактора предварительно герметизированные П-образные оболочки из углерод-углеродного или углерод-карбидокремниевого композиционного материала, имеющие герметичные втулки для замера через них температуры в реакторе, при этом П-образные оболочки своими торцами установлены через уплотнения и/или герметик в углубления, выполненные в днище реактора, с образованием герметичных тороидальных камер, внутри которых располагаются контейнеры, заполненные теплоизоляционным материалом и закрытые крышками, причем герметичные камеры снабжены штуцерами для непосредственного соединения с вакуумной системой. При этом перед тороидальными камерами размещены тепловые экраны цилиндрической формы из предварительно герметизированного углерод-углеродного или углерод-карбидокремниевого композиционного материала, часть которых может быть выполнена в виде спирали Архимеда, а герметичные втулки выполнены заодно с оболочками П-образной формы. Обеспечивается повышение качества объемного металлирования заготовок. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области углерод-углеродных композиционных материалов (УУКМ) и может быть использовано в ракетно-космической технике. Углерод-углеродный композиционный материал содержит каркас в виде иглопробивного материала из дискретных по длине углеродных волокон и пироуглеродную матрицу, имеющую изотропную структуру. Для получения УУКМ дискретные по длине углеродные волокна фрагментируют по толщине вплоть до филаментов, объединяют в тонкие полотна, из полотен формируют каркас в виде иглопробивного материала и насыщают пироуглеродом термоградиентным методом при избыточном давлении 0,025-0,03 атм. в среде метана. Технический результат изобретения – снижение проницаемости изделий до герметичности без увеличения длительности их изготовления. 2 н.п. ф-лы, 8 пр.

Изобретение относится к процессам конденсации паров металлов, в частности кремния, протекающей на горячей поверхности плотного материала, и предназначено для использования при разработке новых процессов металлирования и их совершенствования. Способ определения скорости образования конденсата паров металла на горячей поверхности конденсатора из не имеющего открытых пор химически инертного к металлу термостойкого материала в зависимости от технологических параметров процесса металлирования паро-жидкофазным методом включает создание разницы температур между температурой конденсатора и источника паров металла с более высокой температурой у последнего на одной или нескольких стадиях процесса металлирования, включающего нагрев, изотермическую выдержку и охлаждение, сбор конденсата и вычисление скорости его образования. Собирают твердый и жидкий конденсат паров металла, при этом под упомянутым конденсатором устанавливают сборник жидкого конденсата паров металла. Устройство содержит реактор замкнутого объема, установленный в нагревателе, и источник паров металла, расположенный в нижней части реактора и имеющий более высокую температуру, чем температура упомянутого конденсатора. Упомянутое устройство содержит сборник жидкого конденсата паров металла, который расположен между указанным конденсатором и источником паров металла в той же температурной зоне, что и источник паров металла, и заполнен ультрадисперсными частицами химически инертного к металлу термостойкого материала. Нагреватель выполнен двухсекционным по высоте с отличающимися по температуре зонами. Упомянутый конденсатор и источник паров металла размещены в реакторе напротив указанных зон. Обеспечивается расширение технологических возможностей при металлировании паро-жидкофазным методом. 4 н. и 4 з.п., 4 ил.

Изобретение относится к области конструктивного исполнения высокотемпературных реакторов установок, предназначенных для объемного металлирования пористых материалов. Реактор установки для металлирования заготовок содержит корпус реактора и футеровку. Футеровка содержит установленную внутри корпуса реактора с зазором по отношению к нему предкорпусную неохлаждаемую водой металлическую обечайку, образующую совместно с корпусом реактора герметичную предкорпусную камеру, горизонтально расположенные по высоте корпуса реактора отдельные предварительно герметизированные оболочки, между которыми установлены демпферные прокладки. Концевые участки герметичных оболочек соединены с соответствующими участками предкорпусной обечайки и образуют совместно с ними герметичные камеры тороидальной формы, внутри которых расположены контейнеры из термостойкого материала, заполненные теплоизоляционным материалом и закрытые крышками, и которые снабжены отверстиями для соединения их с герметичной предкорпусной камерой, имеющей со стороны корпуса реактора штуцер для соединения с вакуумной системой. Камеры тороидальной формы имеют профиль, формирующий часть длины каналов для замера температуры во внутреннем объеме реактора. Предкорпусная обечайка имеет выполненные соосно с указанными каналами отверстия, совмещенные с отверстиями в металлических втулках, соединяющих между собой предкорпусную обечайку с корпусом реактора. Обеспечивается повышение вероятности получения положительных результатов по степени металлирования крупногабаритных заготовок парожидкофазным, альтернативным жидкофазным и комбинированным методами металлирования. 6 з.п. ф-лы, 2 ил.

Изобретение относится к торцевым уплотнениям и способу их изготовления и предназначено для использования в различного рода насосах: химических, погружных центробежных, а также в турбинах и т.п. Торцовое уплотнение выполнено из композиционного материала на основе углерод-карбидокремниевой матрицы, содержащей свободный кремний и армированной каркасом тканепрошивной структуры с ориентацией в нем слоев низкомодульной углеродной ткани перпендикулярно его рабочей поверхности и расположением волокон в каждом из слоев ткани под углом 45° к указанной поверхности. При этом композиционный материал непроницаем для жидкости, содержание карбида кремния в углерод-карбидокремниевой матрице композиционного материала увеличивается в сторону его рабочей поверхности, свободный кремний расположен в открытых порах углерод-карбидокремниевой матрицы, а размеры его фрагментов со стороны указанной поверхности не превышают 10 мкм. Технический результат заключается в повышении ресурса работы торцовых уплотнений, снижении их веса и уменьшении утечки перекачиваемой насосом жидкости. 2 н. и 3 з.п. ф-лы, 4 ил., 2 табл.

Изобретение может быть использовано при изготовлении герметичных изделий, предназначенных для работы под избыточным давлением при высоких температурах и воздействии окислительной среды при её одностороннем или двустороннем доступе к изделию. Герметичное изделие монолитной конструкции выполнено из высокотемпературного композиционного материала (КМ), армированного длинномерными волокнами и включает внутреннюю 1 и наружную 2 оболочки. Герметичное покрытие 3, совместимое по коэффициенту линейного термического расширения (клтр) с материалом внутренней 1 и наружной 2 оболочек, расположено между ними. Оболочки 1 и 2 выполнены из высокомодульного высокопрочного углерод-углеродного и/или углерод-карбидокремниевого композиционного материала, и/или композиционного материала, открытые поры углерод-карбидокремниевой матрицы которого заполнены оксидной матрицей того же состава, что и состав материала герметичного покрытия 3, имеющего состав Y2O3×Al2O3×SiO2 или Y2O3×Al2O3×HfO2×SiO2. Между покрытием 3 и наружной 2 оболочкой расположено барьерное покрытие 4, исключающее непосредственный контакт материала покрытия 3 с углеродом и/или кремнием и термодинамически совместимое с указанным покрытием. Между внутренней 1 оболочкой и покрытием 3 либо также расположено барьерное покрытие 4, либо внутренняя оболочка 1 выполнена из углерод-карбидокремниевого композиционного материала, не содержащего в своем составе свободного кремния. Барьерное покрытие 4 формируют перед формированием оксидного покрытия 3 на внутренней оболочке 1, а наружную 2 оболочку формируют поверх оксидного покрытия 3. Герметичное покрытие дополнительно может быть нанесено со стороны наружной 6 и/или внутренней поверхности изделия. Полученные изделия имеют большую толщину и высокую прочность при пониженном весе. 2 н. и 4 з.п. ф-лы, 2 ил., 6 пр.

 


Наверх