Патенты автора Леонтьева Галина Васильевна (RU)

Изобретение относится к химической технологии выделения и утилизации аммонийного азота из водной фазы мокрых скрубберов с получением струвита и может быть использовано в химической, нефтехимической, металлургической, коксохимической промышленности, а также на объектах коммунального и сельского хозяйства. Способ утилизации аммония из скрубберной воды после поглощения аммиака раствором кислоты с получением струвита включает введение ионов магния в форме бишофита, и при необходимости ионов фосфата в форме гидрофосфатов натрия или калия. Перед осаждением струвита устанавливают в воде молярное соотношение ионов Mg2+:NH4+:PO43-, равное (1,0-1,2):1:1 и поддерживают при этом рН раствора не выше 4,6±0,3. Последующую нейтрализацию проводят раствором гидроксида натрия 2-6 M до значения рН 8,5-9,0 путем вливания щелочи в течение не более 45 секунд. Изобретение позволяет повысить степень извлечения ионов NH4+ из скрубберной воды разного состава, не прибегая при осаждении струвита к значительному избытку в скрубберной воде ионов Mg2+ и/или PO43- против их стехиометрического количества в составе струвита. 1 з.п. ф-лы. 1 ил., 1 табл., 6 пр.

Изобретение может быть использовано при очистке сточных вод. Способ регенерации азота и фосфора из сточных вод осаждением их ионов в форме струвита включает осаждение струвита при исходном молярном отношении [Mg2+]:[NH4+]:[РО43-], близком стехиометрическому составу струвита. При наличии в сточной воде ионов фтора проводят предподготовку воды путем добавления карбоната кальция, осаждения и отделения осадка фторида кальция. Недостающие для образования струвита ионы Mg2+ и РО43- вводят в сточную воду в виде промежуточного продукта, который получают смешением растворов. При этом смешивают раствор хлорида или сульфата магния в количестве, позволяющем получать в сточной воде молярное отношение Mg2+/NH4+ от 1,1 до 1,2, и раствор фосфатов натрия или калия, таких как Na3PO4 или K3PO4 и Na2HPO4 или K2HPO4, в количестве и соотношении, которые позволяют устанавливать в сточной воде рН в диапазоне от 8,0 до 9,5 и молярное отношение РО43-/NH4+ равное 1,0. Полученные растворы смешивают при 25-70°С и интенсивном перемешивании в течение 1-2 мин для приготовления промежуточного продукта, который непосредственно после приготовления вводят в сточную воду при ее перемешивании. Полученную суспензию перемешивают в течение 15-20 мин, отстаивают осадок в течение 20-30 мин, осветленную воду отделяют декантацией. Изобретение позволяет повысить степень извлечения ионов NH4+ и РО43- из сточных вод при одновременном осаждении ионов аммония и фосфата в форме струвита, не допуская появления в составе осажденного продукта примеси других фаз. 1 з.п. ф-лы, 1 ил., 9 табл., 5 пр.

Лазерный измеритель может быть использован для контроля прямолинейности и соосности при изготовлении, сборке и монтаже крупногабаритных изделий протяженностью до 100 метров и более. Измеритель содержит лазер, оптическую систему, создающую стабильное базовое направление путем образования кольцевой структуры лазерного пучка, и измерительный блок с фотоприемником, подключенным к вычислительному блоку. С целью создания возможности вести измерения непрямолинейности и соосности одновременно в нескольких точках протяженной трассы оптическая система дополнена узлом из двух оптических клиньев, установленных навстречу друг другу, светоделителем, а измерительная система - базовой маркой с трипельпризмой, и измерительной маркой, состоящей из двух трипельпризм, расположенных симметрично относительно базовой оси. Лазер, оптическая система и фотоприемник размещены на одном общем основании. Технический результат - повышение точности и производительности измерений непрямолинейности и соосности на больших расстояниях. 2 ил.

Изобретение относится к измерительной технике и предназначено для контроля соосности вертикальных отверстий, горизонтальности, параллельности, перпендикулярности и взаимного расположения поверхностей при сборке крупногабаритных изделий. Лазерный отвес содержит лазер, оптическую систему, создающую стабильное базовое направление путем образования кольцевой структуры лазерного пучка, контрольный элемент (марки трипельпризма) и измерительный блок: визуальный и с фотоприемником (цифровой камерой, подключенной к компьютеру). С целью обеспечения стабильного вертикального базового направления большой протяженности в схему прибора включены жидкостная кювета и жидкостный уровень, которые обеспечивают автоматически строго вертикальное направление лазерного пучка независимо от наклонов прибора. Используемая в качестве марки трипельпризма, наклоны которой не влияют на направление отраженного луча, возвращает падающий на нее вертикально лазерный пучок параллельно первоначальному направлению также вертикально. Технический эффект - создание базовых вертикальных осей большой протяженности с высокой степенью стабилизации, повышение точности вертикальных измерений и возможность производить измерения на больших глубинах (более 20 метров) без присутствия наблюдателя. 3 ил.

Устройство предназначено для контроля формы и взаимного расположения поверхностей крупногабаритных изделий и передачи направления на расстояниях до 100 метров и более. Устройство содержит лазер, оптическую систему, создающую стабильное базовое направление путем образования кольцевой структуры лазерного луча, и измерительный блок с позиционно-чувствительным фотоприемником, подключенным к вычислительному блоку. Лазер и оптическая система, создающая стабильное базовое направление, расположены на каретке, которая имеет возможность перемещения по направляющим в горизонтальной и вертикальной плоскостях. Для исключения влияния ошибок направляющих на точность перемещения каретки в интересах передачи и сохранности стабильного базового направления на каретке дополнительно установлены уровень и прямоугольный отражатель, ребро прямого угла которого параллельно базовому направлению и который оптически связан с автоколлимационной лазерной трубкой. Вследствие этого нет необходимости изготовления точных направляющих. На подвижной каретке также устанавливают светоделитель для контроля расположения объектов с плоскими поверхностями. Заявленные в предлагаемом устройстве отличительные признаки позволяют осуществлять контроль и установку поверхностей сложной конфигурации, объектов больших размеров, расположенных на больших расстояниях, определять взаимный разворот разнесенных в пространстве объектов, осуществлять параллельный перенос и передачу на расстояние базового направления. При этом решаются технологические и метрологические задачи, которые ранее либо совсем не решались, либо выполнялись с недостаточной точностью. Например, появляется возможность осуществлять контроль и установку таких объектов, как зеркала Имитатора Солнечного Излучения, многоэлементные зеркала телескопов большого диаметра, составленные из отдельных зеркальных сегментов, осуществлять контроль соосности отверстий атомного реактора в труднодоступных местах в шахте глубиной более 13 метров. Технический эффект - простыми средствами и с высокой точностью (1 мкм/м) появляется возможность осуществлять передачу в пространстве по трем координатам стабильного базового направления, созданного кольцевой структурой лазерного луча. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для определения взаимного разворота разнесенных в пространстве объектов, проверки скручивания поверхностей относительно друг друга, для параллельного переноса визирной линии, для передачи на расстояние базового направления и др

Изобретение относится к измерительной технике и может быть использовано для контроля формы и взаимного расположения поверхностей крупногабаритных изделий и объектов на расстояниях до 100 метров и более

 


Наверх