Патенты автора Чуднов Илья Владимирович (RU)

Изобретение относится к технологиям производства и использования сорбентов, применяемых в том числе для медицинских целей, а именно для экстракорпоральной терапии больных с сепсисом с использованием сорбции биологических жидкостей. Задача изобретения: расширение ассортимента способов эффективного получения и антибактериального применения в составе сорбента ковалентно иммобилизованного лизоцима с отсутствием риска утечки лизоцима в биожидкость (водный раствор, в том числе физраствор, а также плазму крови и цельную кровь (с учетом гемосовместимости сорбента)). Задача решается предлагаемым способом ковалентной иммобилизации лизоцима на аминированную агарозную матрицу, а именно: иммобилизация лизоцима на аминированную агарозную матрицу с получением молекулярного спейсера -NH-C6H12-NH-C5H10-NH-, присоединяющего молекулу лизоцима. В качестве матрицы гемосовместимого сорбента используют промышленно выпускаемые макропористые агарозные матрицы марок Sepharose (Сефароза) (производитель GE Healthcare, США) и WorkBeads (WB) 200 Sec (производитель Bio-Works, Швеция). Иммобилизованный лизоцим в составе полученного сорбента с отсутствием риска утечки лизоцима применяют для снижения бактериальной обсемененности биологических жидкостей посредством лизиса бактериальных клеток с наблюдением результатов лизиса двумя путями: статически со слежением падения оптической плотности или динамически в протоке на сорбционной колонке. 2 н. и 1 з.п. ф-лы, 4 ил., 9 табл., 1 пр.

Изобретение относится к технологиям использования сорбентов, применяемых в том числе для медицинских целей, а именно для экстракорпоральной терапии больных с сепсисом с использованием сорбции биологических жидкостей. Задача изобретения: практическая реализация идеи применения иммобилизованного лизоцима в качестве лиганда в матрице гемосовместимого сорбента для удаления эндотоксинов из биологических жидкостей с отсутствием риска утечки лизоцима в сорбируемую биологическую жидкость (водный раствор, в том числе физраствор, плазму крови и цельную кровь (с учетом гемосовместимости сорбента)). Задача решается предлагаемым способом удаления (сорбции) эндотоксинов из биологических жидкостей с помощью химически (ковалентно) иммобилизованного в аминированной агарозной матрице лизоцима в качестве лиганда. Иммобилизацию лизоцима на агарозной аминированной матрице проводят с получением молекулярного спейсера -NH-C6H12-NH-C5H10-NH-, присоединяющего молекулу лизоцима. 1 з.п. ф-лы, 1 ил., 9 табл.

Изобретение относится к высокомолекулярным соединениям, в частности к галогенсодержащим ароматическим полиэфирсульфонам, которые могут быть использованы в качестве конструкционных и пленочных материалов с повышенными эксплуатационными характеристиками. Ароматический полиэфирсульфон имеет нижеуказанную формулу, в которой z=20-70. Изобретение позволяет получить ароматический полиэфирсульфон с повышенными показателями огне-, тепло- и термостойкости, а также высокими показателями механических характеристик. 2 пр.

Изобретение относится к области переработки полимеров, точнее к исследованиям и оптимизации режимов формования изделий из полимерных композиционных материалов (ПКМ), изготовленных по технологии типа RTM (ResinToolMolding), LRI (LiquidResinInfusion), RFI (ResinFilmInfusion), конкретнее к исследованиям пропитывания образца ткани, предварительно уложенной в закрытую полость измерительной ячейки установки (стенда) для исследования кинетики пропитывания тканей различной структуры и химической природы в режимах смачивания и фильтрации. Предлагаемая установка для исследований кинетики пропитки образцов тканей жидкими полимерными связующими состоит из резервуара с жидким связующим, устройства для пропитки исследуемого образца связующим и компрессора для создания давления при подаче связующего. Устройство для пропитки представляет собой горизонтальную трубку с отводами, выполненную из прозрачного материала; один конец трубки соединен с резервуаром с жидким связующим для пропитки под давлением, и на этом же конце трубки в отводе установлена газовая емкость для ввода газового пузырька в связующее в трубке; для контроля давления, определяющего скорость движения связующего в трубке, подключен манометр, а для определения скорости движения связующего в устройстве для пропитки установлен прибор для видеофиксации с привязкой к реальному времени перемещения газового пузырька в связующем; во всех отводах трубки к указанным компрессору, резервуару со связующим, газовой емкости, манометру установлены запорные краны. При этом в устройство для пропитки наполнителя связующим дополнительно установлена измерительная ячейка для образца исследуемой ткани между впереди расположенной прозрачной капиллярной трубкой и ловушкой для излишка связующего; измерительная ячейка представляет собой конструкцию из двух прямоугольных металлических плит матрицы и пуансона с облицовкой фторопластом с герметичной плоской прямоугольной щелью между ними для размещения в ней тканного образца с возможностью его внешнего сдавливания пуансоном; отверстия для ввода в герметичную щель ячейки жидкого полимерного связующего и вывода его излишков расположены сбоку на противоположных сторонах плит и снабжены штуцерами для присоединения внешних трубок. Установка выполнена с возможностью регулирования ширины фронта течения связующего путем изменения расположения по периферии образца ткани элементов уплотнения, направляющих связующее в образец. Предлагаемая установка позволяет исследовать кинетику пропитки образцов тканей различных плетений жидкими полимерными связующими в условиях различного давления впрыска связующего. Полученные результаты могут быть использованы при выборе режимов пропитывания и для расчета на прочность пресс-формы полимерного композита при его проектировании. 1 з.п. ф-лы, 4 ил.

Изобретение относится к теплостойким композиционным материалам, которые могут применяться в различных отраслях техники, в частности в авиационной и космической технике, и к способу их получения. Описан термостойкий полимерный композиционный материал, содержащий силоксановый каучук в качестве матрицы и многостенные углеродные нанотрубки (УНТ) в качестве наполнителя в количестве 0,1-1,0 мас.ч. на 100 г мас.ч. матрицы, при этом материал обладает термостойкостью: изменение массы при 400°С не более 3,93%, и физико-механическими свойствами: модуль упругости при растяжении 0,93-3,63 МПа при относительном удлинении 330-505%. Также описан способ получения полимерного композиционного материала. Технический результат: создание нового полимерного композиционного материала с повышенной термостойкостью и улучшенными механическими свойствами на основе силоксанового каучука в качестве матрицы и углеродных нанотрубок в качестве наполнителя. 2 и 4 з.п. ф-лы, 9 ил., 1 табл., 8 пр.

Изобретение относится к сорбентам на основе гранулированных активированных углей, модифицированных полипирролом, используемых в медицине. Предложено два электорохимических варианта способа изготовления сорбента. Согласно первому варианту способ осуществляют в водном электролите с додецилсульфат ионами. Согласно второму варианту способ проводят с неводным растворителем в электролите с хлорид ионами. Полученный сорбент содержит полипиррол, допированный хлорид ионом, который покрывает около 5,0% поверхности гранул угля. Для электрохимически управляемой гемо- или плазмосорбции внешнюю потенциостатическую поляризацию сорбента во время проведения сорбции проводят в диапазоне от -0,2 В до +0,2 В относительно хлорсеребряного электрода сравнения. Скорость прокачивания крови или плазмы крови соответствует скорости естественного кровотока человека, равной около 150 мл/мин. Изобретение обеспечивает возможность удаления из крови или плазмы крови токсичных веществ с различной молекулярной массой и позволяет регулировать процесс удаления этих веществ. 4 н.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к космической технике, в частности к созданию прецизионных антенных рефлекторов с высокоточными отражающими поверхностями сложной геометрии, искривленными в двух измерениях, для эксплуатации в условиях космического орбитального полета. Технический результат - повышение жесткости и температурной размеростабильности, минимизация массы каркаса конструкции космического антенного рефлектора. Для этого каркас конструкции антенного рефлектора включает тонкую оболочку сложной геометрической формы, подкрепленную со своей тыльной стороны ребрами жесткости в виде сетчатой структуры, которая собрана из трех комплектов параллельных ребер жесткости, расположенных относительно друг друга под углами 60 градусов и приклеенных к тыльной стороне оболочки рефлектора. Каждое из ребер имеет пазы, обеспечивающие сборку ребер в единую сетку для последующего склеивания друг с другом и совместно с оболочкой в единое целое, причем продольные плоскости всех ребер ориентированы параллельно фокусной оси рефлектора. При этом сетка выполнена в виде гибридной треугольно-гексагональной структуры, состоящей из трехгранных и шестигранных ячеек, и образована из изогридной треугольной структуры при эквидистантном смещении одного из трех комплектов параллельных ребер, при этом для увеличения узловой жесткости в местах стыка ребер друг с другом полости образованных трехгранных ячеек заливают клеевым компаундом с последующим отверждением. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области полимеров, а именно к области создания многофункциональных нанокомпозиционных материалов, и может быть использовано для получения конструкционных материалов с повышенными механическими и теплофизическими характеристиками, стойкими к агрессивным средам, например, в производстве пластиковых оболочек кабелей электротехнической промышленности, пленочных упаковочных материалов, мешков, тары, пластиковых труб. Способ получения наномодифицированного термопласта включает получение наномодифицированного связующего путем подготовки с помощью ультразвукового воздействия мощностью от 1 до 5 кВт и амплитудой от 20 до 80 мкм концентрата диспергированием частиц наномодификатора в полимерной матрице - смоле и введением полученного концентрата в связующее, после чего с последующим перемешиванием осуществляют получение наномодифицированного термопласта. В качестве полимерной матрицы используют расплав, по меньшей мере, одного термопласта с вязкостью не менее 10 сП в диапазоне температур, обусловленных условиями переработки термопласта в расплавленном состоянии, а именно от 120 до 200°С. Достигаемый технический результат заключается в получении термопластичного полимерного нанокомпозита с повышенным уровнем деформационно-прочностных характеристик. 1 з.п. ф-лы, 6 табл.

Изобретение относится к элементам силовых конструкций, работающих под нагрузкой, и может быть использовано в качестве балок строительных сооружений, перекрытий при строительстве ангаров, траверс опор линий электропередач и т.п. Конструкционный элемент содержит сердечник и армирующие слои из последовательно уложенных с обеих сторон сердечника слоев стеклоткани со скреплением слоев, пропитанных связующим, преимущественно по технологии вакуумной инфузии. В качестве слоев армирующего материала использованы стеклоткани с различной угловой ориентацией волокон по отношению к продольной оси сердечника, слои сформированы в одинаковые пакеты, причем в наиболее нагруженных частях конструкционного элемента каждый пакет образован как минимум из трех слоев разных стеклотканей, а именно: внутренний центральный слой - стеклоткань, выложенная так, что волокна, образующие данную стеклоткань, оказываются уложенными под углами 0° и 90° по отношению к продольной оси сердечника, а остальные слои - внешние по отношению к центральному слою - из мультиаксиальной стеклоткани, выложенной так, что волокна, образующие данную стеклоткань, оказываются уложенными под углами 0°, +45° и -45° по отношению к продольной оси сердечника. В качестве связующего использовано наномодифицированное эпоксидное связующее марки ВСЭ-28, а в качестве материала сердечника - пенополиуретан. Конструкционный элемент обладает повышенной стойкостью к воздействию нагрузок, к воздействию неблагоприятных климатических факторов, обладает уменьшенной массой и технологичен в изготовлении. 3 з.п. ф-лы, 3 ил., 6 табл.

Изобретение может использоваться в многослойных комбинированных покрытиях зеркальных космических антенн с рефлекторами из полимерного композиционного материала - углепластика. Многослойное покрытие содержит три последовательных слоя с равномерной толщиной: нижний зеркальный металлический радиоотражающий скин-слой из чистого алюминия, промежуточный защитный терморегулирующий диэлектрический слой из диоксида циркония и верхний защитный износостойкий высокопрочный алмазоподобный углеродный слой. Технический результат - обеспечение работы в экстремальных условиях открытого космоса за счет использования тонкой подложки-оболочки из полимерного композиционного материала - углепластика. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитики и может быть использовано для исследования и оптимизации режимов формования изделий из полимерных композиционных материалов. Установка для исследования кинетики пропитки волокнистых наполнителей полимерными связующими содержит резервуар со связующим, устройство для пропитки связующим волокнистого наполнителя с окном наблюдения из прозрачного материала и компрессор. Устройство для пропитки представляет собой горизонтальную трубку с отводами, выполненную из прозрачного материала, в которой один открытый конец заполнен исследуемым волокнистым наполнителем, а другой конец соединен с резервуаром со связующим для пропитки волокон под давлением, причем на этом же конце трубки в отводе установлена газовая емкость для ввода газового пузырька в связующее в трубке. Для контроля давления связующего в трубке подключен манометр, а для определения скорости движения связующего в трубке и волокнах установлен прибор для видеофиксации с привязкой к реальному времени перемещения газового пузырька в связующем и волокнах. Во всех отводах трубки к указанным компрессору, резервуару со связующим, газовой емкости и манометру установлены запорные краны. Изобретение позволяет получить точные экспериментальные данные по кинетике течения связующего в образцах волокнистого наполнителя. 2 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к элементам силовых конструкций, работающих под нагрузкой, и может быть использовано в качестве элементов опор несущих высоконагруженных вертикальных строительных сооружений, опор мостов, несущих опор линий электропередач, ветровых генераторов и прочее. Длинномерный силовой конструкционный элемент типа вертикальной колонны из полимерного композиционного материала, содержащий пропитанные связующим и уложенные друг на друга слои композиционного материала, образующие непрерывную стенку продольной полости и расположенные по пространственным спиральным кривым, наклоненным к продольной оси полости под постоянным углом не менее 40°. В качестве материала слоев, образующих тонкостенную цилиндрическую или слабоконическую оболочку, использован стеклоровинг, пропитанный наномодифицированным связующим в ходе «мокрой» намотки слоев, соседние слои намотаны друг относительно друга перекрестно относительно продольной оси и под разными углами к продольной оси элемента, а именно поперечно намотанные слои - под углом в диапазоне 40…50°; продольно намотанные слои - под углом в диапазоне 5…10°. Из слоев сформированы два типа чередующихся пакетов, отличающихся по количеству и расположению слоев в них, а именно поперечный пакет из двух поперечно и перекрестно намотанных слоев и продольный пакет из четырех продольно и чередующихся перекрестно намотанных слоев, причем наружный и самый нижний внутренний пакеты композиционного элемента - поперечные. Технический результат - разработка длинномерного силового конструкционного элемента типа вертикальной колонны из полимерных композитных материалов (ПКМ), обладающего уменьшенной массой, технологичного в изготовлении и обладающего высокой стойкостью к воздействию осевых, изгибных и скручивающихся нагрузок, а также неблагоприятных климатических факторов. 2 з.п. ф-лы, 6 табл., 1 пр., 1 ил.
Изобретение относится к эпоксидным композиционным связующим, используемым для производства композиционных материалов, например стеклопластиков и углепластиков, изготавливаемых методами вакуумной инфузии и RTM, широкого спектра применения, например, в авиационной, аэрокосмической, судостроительной, автомобильной и других отраслях промышленности. Эпоксидное связующее для полимерных композиционных материалов включает эпоксидную диановую смолу, разбавитель и отвердитель. В качестве разбавителя используют фурфуролацетоновую смолу, а в качестве отвердителя - триэтаноламинтитанат, при следующем соотношении компонентов связующего, мас.ч.: эпоксидная диановая смола - 100; фурфуролацетоновая смола - 5…50; триэтаноламинтитанат - 5…15. Техническим результатом изобретения является создание связующего на основе эпоксидной композиции, обладающего повышенными эксплуатационными характеристиками, в частности пониженной вязкостью и высокой термостойкостью, которое может быть эффективно использовано при производстве композиционных материалов, изготавливаемых методами вакуумной инфузии и RTM. 1 пр., 2 табл.
Изобретение относится к области получения композиционных материалов на основе смол, диспергированных наномодификатором - углеродными нанотрубками (УНТ), которые могут быть использованы для введения в высоковязкие основы при получении полимерных композиционных материалов широкого спектра применения. Способ получения связующего включает введение в основу наномодификатора - углеродных нанотрубок с последующим ультразвуковым диспергированием наномодификатора в основе, причем в качестве основы используют фурфуролацетоновую смолу, углеродные нанотрубки вводят в основу в количестве 0,001-30 мас.%. При этом перед введением в основу углеродные нанотрубки обезвоживают, а процесс ультразвукового диспергирования ведут при комнатной температуре во временном диапазоне от 5 минут до 12 часов. Причем при осуществлении способа не требуется использование растворителя. Результатом является обеспечение равномерного распределения УНТ по объему основы материала, в который вводят данное связующее, и сокращение времени получения этого связующего. 1 пр.

Изобретение относится к литейному производству. Устройство содержит разъемный полый корпус, в котором посредством проставок образован литниковый капал. Корпус образован разъемными боковыми стенками, верхней и нижней крышками, прикрепленными к боковым стенкам. Проставки в корпусе установлены с возможностью съема. Сверху или снизу относительно каждой проставки установлен ограничитель, имеющий возможность возвратно-поступательного перемещения относительно проставки. В верхней крышке предусмотрены элементы, один из которых предназначен для соединения литникового канала с емкостью для материала образцов, а другой - для соединения литникового канала с вакуумным насосом. Обеспечивается получение качественных образцов без брака и без дополнительной их обработки. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области изготовления полимерных нанокомпозитов, которые могут быть использованы в качестве конструкционных материалов в космической, авиационной, строительной и других отраслях промышленности. Способ включает приготовление наносуспензии путем введения в реактопластичное связующее углеродных нанотрубок при ультразвуковом воздействии с интенсивностью в кавитационной зоне в пределах от 15 до 25 кВт/м2. Причем диспергирование углеродных нанотрубок в связующем осуществляют с одновременной фоторегистрацией изменений интенсивности окраски наносуспензии. При достижении наносуспензией значений интенсивности окрашивания, соответствующих значениям нормированной степени диспергирования в диапазоне от 0,9 до 0,99, ультразвуковое воздействие прекращают. Способ позволяет оптимизировать степень диспергирования углеродных нанотрубок в связующем и сократить время изготовления нанокомпозитов, обладающих повышенной прочностью за счет равномерного распределения наночастиц в нанокомпозите. 3 ил.

Изобретение относится к области термоформования изделий с наполнителями, полученных путем навивки, в частности к производству замкнутых осесимметричных оболочек с прямолинейной или пологой криволинейной образующей, имеющей постоянный знак гауссовой кривизны по всей своей длине, и может быть использовано в производстве мотогондол авиационных двигателей и емкостей для хранения жидкости

 


Наверх