Патенты автора ЛИНЬ Минь (CN)

Изобретение относится к новому соединению формулы (I) или его фармацевтически приемлемой соли. Соединения обладают свойствами ингибитора циклин-зависимой киназы 4/6 (CDK4/6) и могут быть использованы для лечения заболеваний, связанных с активностью CDK4/6, например для лечения пролиферативных заболеваний. В формуле (I) Q представляет собой 6-членный гетероарил, содержащий один или два гетероатома, выбранных из N; W выбран из N и CН; Z выбран из N и CR6; R1 выбран из гетероциклил-C1-4 алкила, где гетероциклил представляет собой 6-12-членное моно- или бициклическое кольцо, содержащее один или два атома азота или один или два атома азота и один атом кислорода, и алкил и гетероциклил являются незамещенными или замещены по меньшей мере одним заместителем, таким как один, два, три или четыре заместителя, независимо выбранных из RX; каждый R2 представляет собой водород; каждый R3 независимо выбран из водорода и C1-6 алкила, где алкил является незамещенным или замещен одним, двумя, тремя или четырьмя заместителями, независимо выбранными из RX; или два R3 вместе с атомами углерода, к которым они присоединены, образуют 3-7-членное циклическое кольцо, не содержащее дополнительных гетероатомов и необязательно замещенное 1, 2 или 3 группами RX; R4 выбран из водорода и галогена; каждый R5 представляет собой водород; каждый R6 независимо выбран из водорода и фтора; каждый RX независимо выбран из C1-6 алкила, 6-членного гетероциклила, содержащего два атома азота, галогена, -NRa1Rb1 и -ORa1, где алкил и гетероциклил являются незамещенными или замещены по меньшей мере одним заместителем, таким как один, два, три или четыре заместителя, независимо выбранных из RY; каждый Ra1 и каждый Rb1 независимо выбраны из водорода и C1-6 алкила; RY независимо выбран из C1-10 алкила; m равен 2 или 3; n выбран из 0, 1 и 2; p выбран из 0, 1, 2 и 3; q выбран из 1, 2 и 3. 8 н. и 15 з. п. ф-лы, 6 табл., 169 пр.

Настоящее изобретение раскрывает способ окисления олефина, включающий в себя стадию последовательного пропускания реакционного потока подачи при условиях окисления С2-С16 α-олефина через слои катализатора, выбранного из силикалитов титана, от № 1 до № n, где n представляет собой целое число от 2 до 50. В соответствии с изобретением, если кажущаяся скорость каждого из реакционных материалов, проходящих через от № 1 до № n слоев катализатора, соответственно, обозначается как v1 - vn, и если m представляет собой любое целое число в диапазоне [2, n], то выполняются следующие соотношения vm-1<vm и Аm-1/Аm>1. Способ в соответствии с настоящим изобретением способен продлить срок службы катализатора, в частности, его однократный срок службы, подавляя в то же самое время любые побочные реакции в течение длительного периода времени. Настоящее изобретение дополнительно раскрывает реакционное устройство с неподвижным слоем и систему для окисления олефина. 3 н. и 9 з.п. ф-лы, 9 ил., 5 табл., 69 пр.

Изобретение относится к соединению формулы (I) и/или его фармацевтически приемлемой соли. В формуле (I) X представляет собой C; Y представляет собой O или S; 6-5-членная конденсированная кольцевая система A-B выбрана из: , Q выбран из гетероарила; R1 выбран из: водорода, C1-6 алкила, гетероциклила, гетероциклил-C1-4 алкила, где гетероциклил является незамещенным или замещен, по меньшей мере, одним заместителем, при этом один, два, три или четыре заместителя независимо выбраны из R6a; R2 выбран из: C3-10 циклоалкила, где циклоалкил является незамещенным или замещен, по меньшей мере, одним заместителем, независимо выбранным из R6a; R3 и R4 независимо выбраны из: водорода, C1-10 алкила и C3-10 циклоалкила; или R3 и R4 вместе с атомами азота, к которым они присоединены, образуют 4-6-членное кольцо, содержащее 0 или 1 гетероатом, независимо выбранный из кислорода и азота, и необязательно замещенное 1 группой R6a; каждый R5 независимо выбран из: C1-10 алкила, -C(O)R7; каждый R6a независимо выбран из: -C1-10 алкила, -OR8, -NR7R8, -(CR9R10)tOR8, -(CR9R10)tS(O)rR8, -C(O)R7 и -C(O)NR7R8; каждый R7 и каждый R8 независимо выбраны из: водорода и C1-10 алкила, где алкил является незамещенным или замещен одним заместителем R6a; или R7 и R8 вместе с атомом(ами), к которому(ым) они присоединены, образуют гетероциклическое кольцо из 6 членов, содержащее 0 или 1 дополнительный гетероатом, независимо выбранный из кислорода и азота, и необязательно замещенное 1 группой R6a; каждый R9 и каждый R10 независимо выбраны из: водорода; m независимо выбран из 0 и 1; каждый r равен 2; каждый t независимо выбран из 1, 2 и 3; где гетероарил представляет 6-членные ароматические моноциклические кольца, содержащие от 1 до 2 гетероатомов, выбранных из N, при этом остальные кольцевые атомы являются атомами углерода; 9-10-членные бициклические кольца, содержащие от 2 до 3 гетероатомов, выбранных из N, при этом остальные кольцевые атомы являются атомами углерода, и где по меньшей мере в ароматическом кольце присутствует один гетероатом; где гетероциклил представляет собой одно алифатическое кольцо, содержащее 6 кольцевых атомов, содержащих 1-2 гетероатома, независимо выбранных из кислорода и азота; или бициклическую кольцевую систему, содержащую от 6 до 10 кольцевых атомов, содержащих 1-3 гетероатома, независимо выбранных из кислорода и азота; и где гетероцикл может быть замещен оксо. Изобретение также относится к фармацевтической композиции, к способам модулирования циклинзависимой киназы 4/6, способам лечения, улучшения или профилактики состояния, которое реагирует на ингибирование циклинзависимой киназы 4/6, к способам лечения клеточного пролиферативного расстройства. Технический результат: получены новые соединения формулы (I), которые могут ингибировать активность циклинзависимой киназы 4/6. 9 н. и 10 з.п. ф-лы, 4 табл.

Изобретение относится к способу получения диметилсульфоксида, который включает следующие стадии: (1) приведение в контакт сероводорода с метанолом для получения смеси, содержащей диметилсульфид, и отделение диметилсульфида от смеси; и (2) в присутствии растворителя приведение в контакт диметилсульфида, полученного на стадии (1), по меньшей мере, с одним окислителем и катализатором для получения смеси, содержащей диметилсульфоксид, причем вышеупомянутый катализатор включает, по меньшей мере, одно титаносиликатное молекулярное сито, растворитель выбирается из воды и C1-C6-спирта. 24 з.п. ф-лы, 2 ил., 1 табл., 20 пр.

Изобретение предлагает способ очистки пропиленоксида, причем данный способ включает следующие стадии: (1) раствор, содержащий в определенном количестве пропилен, пропиленоксид, необязательно пропан, органический растворитель и воду, и водный раствор органического растворителя в качестве первого экстракционного реагента поступают в первую экстракционную ректификационную колонну, в которой осуществляется разделение, причем условия ректификации в первой экстракционной ректификационной колонне регулируются таким образом, что обогащенный пропиленом продукт верхней фракции получают из верхней части первой экстракционной ректификационной колонны, и продукт нижней фракции, который обогащен пропиленоксидом, органическим растворителем и водой, получают из нижней части первой экстракционной ректификационной колонны; (2) продукт нижней фракции, который обогащен пропиленоксидом, органическим растворителем и водой и получен из нижней части первой экстракционной ректификационной колонны, разделяют, чтобы получить пропиленоксидный продукт и раствор, содержащий органический растворитель и воду. Способ согласно настоящему изобретению обеспечивает низкий расход энергии, простоту технологического процесса и высокий выход пропиленоксида. 22 з.п. ф-лы, 3 ил., 3 пр.

Настоящее изобретение относится к способу рафинирования сырого пропиленоксида и способу получения пропиленоксида, включающему способ рафинирования. В соответствии со способом рафинирования: сырой пропиленоксид вводят в первую колонну азеотропной дистилляции и подвергают азеотропной дистилляции, условия первой азеотропной дистилляции позволяют получать наибольшее количество пропиленоксида и часть метанола из материала, вводимого в первую колонну азеотропной дистилляции, в форме азеотропа из верхней части колонны и позволяют получать остаточный метанол и небольшое количество пропиленоксида из нижней части колонны, пропиленоксид в эффлюенте из нижней части первой колонны азеотропной дистилляции не превышает 5% масс.; азеотроп, получаемый из верхней части первой колонны азеотропной дистилляции, вводят во вторую колонну азеотропной дистилляции и подвергают азеотропной дистилляции, условия второй азеотропной дистилляции позволяют получать наибольшее количество метанола и часть пропиленоксида из составов, вводимых во вторую колонну азеотропной дистилляции, в форме азеотропа из верхней части колонны, и позволяют получать остаточный пропиленоксид и небольшое количество метанола из нижней части колонны, метанол в эффлюенте из нижней части второй колонны азеотропной дистилляции не превышает 5% масс.; азеотроп, получаемый из верхней части второй колонны азеотропной дистилляции, возвращают в первую колонну азеотропной дистилляции и подвергают азеотропной дистилляции вместе с сырым пропиленоксидом. 2 н. и 13 з.п. ф-лы, 1 ил., 1 табл., 16 пр.
Настоящее изобретение относится к способу эпоксидирования олефина, который включает эпоксидирование олефина пероксидом водорода в присутствии катализатора, представляющего собой молекулярное сито на основе силиката титана, и основной анионообменной смолы в условиях эпоксидирования олефина. При этом массовое соотношение катализатора и основной анионообменной смолы составляет 1:0,05-1,5. Технический результат - увеличение конверсии пероксида водорода, селективности по эпоксидированному олефину и срока службы катализатора. 18 з.п. ф-лы, 15 табл., 11 пр.

Настоящее изобретение относится к катализатору и способу его получения, а также способу эпоксидирования олефина с использованием катализатора. Катализатор содержит связующее вещество и силикат титана, причем связующее вещество является аморфным диоксидом кремния, указанный силикат титана имеет топологию MFI, и кристаллическое зерно силиката титана имеет полую структуру с радиусом полостей 5-300 нм, где адсорбционная способность по бензолу, измеренная для силиката титана при условиях 25°C, P/P0=0,10 и времени поглощения 1 час, составляет не менее 70 мг/г, и изотермы адсорбции-десорбции содержат петлю гистерезиса для адсорбции азота молекулярным ситом при низкой температуре; где содержание связующего вещества составляет 3-15% масс., содержание силиката титана составляет 85-97% масс. от общего количества катализатора; и катализатор имеет значение прочности при сжатии не менее чем 60 Н/см, измеренное согласно стандарту GB3635-1983. Катализатор по настоящему изобретению имеет высокую прочность и проявляет высокую каталитическую активность при эпоксидировании олефинов. 3 н. и 15 з.п. ф-лы, 1 табл., 9 пр.

Изобретение относится к способу получения алкиленоксида эпоксидированием олефина. Предложенный способ содержит стадии: (1) в условиях первого эпоксидирования олефина в присутствии первого твердого катализатора первый смешанный поток, содержащий растворитель, олефин и Н2О2, подвергают эпоксидированию в одном или нескольких реакторах с неподвижным слоем и/или в одном или нескольких реакторах с подвижным слоем до тех пор, пока превращение Н2О2 не достигнет 50%-95%, затем, необязательно, реакционную смесь, полученную на стадии (1), подвергают разделению, чтобы получить первый поток, не содержащий Н2О2, и второй поток, содержащий непрореагировавший Н2О2, и олефин вводят во второй поток, чтобы получить второй смешанный поток, или, необязательно, олефин вводят в реакционную смесь, полученную на стадии (1), чтобы получить второй смешанный поток; (2) в условиях второго эпоксидирования олефина реакционную смесь, полученную на стадии (1), или второй смешанный поток, полученный на стадии (1), и второй твердый катализатор вводят в один или несколько реакторов с суспендированным слоем для проведения эпоксидирования до тех пор, пока суммарное превращение Н2О2 не достигнет 98% или более, при условии, что указанный способ получения алкиленоксида эпоксидированием олефина имеет селективность в отношении алкиленоксида 90% или более. Технический результат - объединение реактора с суспендированным слоем с реактором с неподвижным слоем и/или с реактором с подвижным слоем позволяет преодолеть низкое превращение Н2О2 в случае, когда используют только реактор с неподвижным слоем и/или реактор с подвижным слоем, и низкую селективность в отношении целевого алкиленоксида в случае, когда используют только реактор с суспендированным слоем. 9 з.п. ф-лы, 2 табл., 8 пр.

Изобретение относится к титаносиликатным материалам и способам их получения

 


Наверх