Патенты автора Максимов Антон Львович (RU)

Настоящее изобретение относится к способам химической переработки полимерных отходов в жидкие продукты. Способ заключается в измельчении полимерных отходов, их плавлении, смешении с органическим растворителем в массовом соотношении 1:9-4:1, гидроконверсии с водородсодержащим газом в присутствии суспензии дисперсного катализатора и сепарации продуктов гидроконверсии с получением различных фракций. В качестве полимерных отходов используется смесь полиэтиленов высокого и низкого давления и полипропилена. Органический растворитель представляет собой остатки атмосферной или вакуумной перегонки нефти либо остаток атмосферно-вакуумной дистилляции гидрогенизата, получаемого в сларри-процессе. Растворитель также содержит суспензию наноразмерных частиц MoS2 с размером 50-650 нм. Гидроконверсию проводят при 400-445°С и давлении 3-10 МПа в течение 1-3 ч. Содержание катализатора в реакционной зоне в пересчете на молибден составляет 0,05-0,2% мас. Расход водородсодержащего газа составляет 500 нм3 на 1 т смеси полимерных отходов. Изобретение позволяет улучшить показатели гидроконверсии, такие как время процесса и доля перерабатываемых полимерных материалов, при уменьшении необходимого давления до 3-10 МПа, а также уменьшить необходимое количество катализатора, кроме того, приводит к повышению рентабельности способа, снижению энергозатрат и затрат, связанных с применением спецоборудования. 2 н. и 12 з.п. ф-лы, 1 ил., 3 табл., 9 пр.

Изобретение относится к области нефтепереработки и коксохимии, в частности, к области получения нефтяного кокса с пониженным содержанием серы путем предварительного окисления сернистых соединений, содержащихся в сырье для коксования, до соответствующих сульфонов и может быть использовано в нефтеперерабатывающей и коксохимической промышленности. Заявлены варианты способа, каждый из которых включает смешение серосодержащего углеводородного сырья с катализатором и окислителем, перемешивание исходных компонентов, окисление при повышенной температуре, выделение продукта, содержащего окисленные сернистые, соединения и его коксование с получением товарного продукта – кокса. Причем при смешении исходных компонентов дополнительно добавляют поверхностно-активное вещество - соль четвертичного аммония, взятую в количестве 0,1-4 мас.% по отношению к массе углеводородного сырья, в качестве окислителя используют в одном варианте - газообразный окислитель, а в другом варианте - жидкий окислитель при соотношении окислитель:сера, содержащаяся в углеводородном сырье, равном 2-30:1; катализатор берут в количестве 0,05-1 мас.% по отношению к углеводородному сырью, перемешивание исходных компонентов осуществляют со скоростью не менее 600 об/мин, окисление полученной смеси ведут при температуре 40-200°С, давлении 1-20 атм в течение 1-6 ч, затем охлаждение, в случае использования жидкого окислителя отделение водной фазы, содержащей отработанные окислитель и катализатор, и коксование выделенного продукта при температуре 420-560°С. Техническим результатом заявленной группы изобретений является упрощение и удешевление способа получения кокса с пониженным содержанием серы при таком же или более низком содержании серы в коксе. 2 н. и 8 з.п. ф-лы, 1 табл., 29 пр.

Изобретение относится к органическому синтезу и более конкретно к способу получения дициклопропанированного 5-винил-2-норборнена, включающему растворение 5-винил-2-норборнена в органическом растворителе, добавление соли палладия (II), охлаждение полученного раствора до (-15)-(-20)°С, добавление раствора диазометана к раствору 5-винил-2-норборнена и перемешивание полученного раствора в течение 2-2.5 часов при этой температуре, затем нагревание раствора до комнатной температуры и перемешивание в течение 20-24 часов, фильтрацию полученной реакционной смеси и последующее упаривание в вакууме 40-50 мм рт.ст. при комнатной температуре с удалением органического растворителя и получением целевого продукта - дициклопропанированного 5-винил-2-норборнена. Технический результат - получение целевого продукта с выходом, близким к количественному - до 97-99%. 2 з.п. ф-лы, 2 ил., 2 табл., 4 пр.
Предложен способ получения катализатора алкилирования бензола этиленом, включающий получение катализатора на основе цеолита ZSM-5 без связующего, его сушку и прокаливание, где смешивают порошкообразный цеолит ZSM-5 21-40 мас.%, каолин 6-15 мас.%, молотый силикагель 50-63 мас.% и олигомерные эфиры ортокремниевой кислоты 2-8 мас.%, увлажняют полученную смесь водой, формуют гранулы, которые далее сушат, прокаливают в атмосфере воздуха при 550-700°С в течение 2-6 часов, осуществляют гидротермальную кристаллизацию в реакционной смеси мольного состава (2,8-4,2)Na2O⋅(0,7-2,4)R⋅Al2O3⋅(60-90)SiO2⋅(400-1100)H2O при 110-120°С в течение 48-72 часов, промывают водой, трехкратно обрабатывают водными растворами солей аммония с концентрацией NH4+ 50-80 г/дм3 при 70-90°С в течение 2-3 часов до степени замещения катионов Na+ в цеолите не менее 97%, промывают водой, сушат и прокаливают. Также предложен способ алкилирования бензола этиленом с получением этилбензола, включающий взаимодействие бензола с этиленом в газовой фазе на цеолитсодержащем катализаторе, где используют катализатор, полученный по способу, описанному выше. Технический результат: высокое содержание этилбензола в алкилате и упрощение способа получения катализатора алкилирования бензола этиленом. 2 н. и 1 з.п. ф-лы, 1 табл., 11 пр.

Изобретение относится к нефтехимии и, более конкретно, к способу получения ароматических углеводородов путем каталитической конверсии синтез-газа (смесь Н2, СО и СО2), и может быть использовано для получения ароматических углеводородов фракции С6-С11. Согласно изобретению предложены три варианта получения цеолитов типа HZSM с использованием в качестве темплатов - бромида N1,N10-бис(2-гидроксиэтил)-N1,N1,N10,N10-тетраметилдекан-1,10-диаммония, с получением цеолита гибридного типа HZSM-5/HZSM-11; бромида N1,N4-бис(2-гидроксиэтил)-N1,N1,N4,N4-тетраметилбутан-1,4-диаммония с получением цеолита HZSM-12; и бромида N1,N6-бис(2-гидроксиэтил)-N1,N1,N6,N6-тетраметилгексан-1,6-диаммония с получением цеолита гибридного типа HZSM-5/HZSM-12, характеризующихся соотношением Si/Al, равным 100-104, степенью кристалличности 96-98%, площадью поверхности 274-298 м2/г и объемом пор 0,21-0,24 см3/г. Способ получения цеолита типа HZSM включает следующие стадии: смешение соединений алюминия, кремния и темплата, выдерживание смеси для формирования гелевой структуры, кристаллизацию полученного геля, выделение кристаллического продукта, удаление темплата путем отжига, получение NH4-формы цеолита путем проведения ионного обмена с последующим выделением полученного кристаллического цеолита и перевод в Н-форму. Предложен также способ получения ароматических углеводородов фракции С6-С11, согласно которому проводят каталитическую конверсию синтез-газа с соотношением Н2/СО, равным 1-2/1 мол/мол, при повышенных давлении и температуре в присутствии медьцинкалюминиевого катализатора К1 - МегаМакс-507, выделение жидких продуктов реакции с разделением на водный конденсат и жидкие углеводороды, содержащие ароматические углеводороды фракции С6-С11. При этом в способе дополнительно получают цеолит типа HZSM, затем получают второй цеолитный катализатор К2, содержащий полученный цеолит типа HZSM и оксид алюминия, взятые в соотношении цеолит/Al2O3=70/30 мас./мас. Получение ароматических углеводородов осуществляют в одну стадию в радиальном реакторе синтеза ароматических углеводородов с неподвижным слоем композитного катализатора, полученного физическим смешением двух компонентов К1 и К2 в соотношении К2/К1, равном 1-3/3 мас/мас, через который в проточном режиме пропускают синтез-газ при давлении 5-7 МПа. Технический результат: упрощение процесса, увеличение селективности образования ароматических углеводородов и выхода ароматических углеводородов фракции С6-С11 в расчете на исходный углерод, а также возможность при реализации предлагаемой технологии в опытно-промышленных масштабах увеличить производительность установки по продукту и решить проблему утилизации сточных вод и отходов производства стандартными методами. 4 н. и 4 з.п. ф-лы, 11 пр., 1 табл., 5 ил.

Изобретение относится к способам получения катализатора трансалкилирования, включающим цеолит и неорганическое связующее вещество, к катализатору и способу трансалкилирования ароматических углеводородов с образованием этилбензола в присутствии полученного катализатора. Катализатор, содержащий более 65% объема мезо- и макропор диаметром 2-50 нм, получают путем смешения 80-90 мас.% цеолита Y в Н+РЗЭ-форме с размером частиц не более 2 мкм, 10-20 мас.% связующего, пластификатора в количестве 1-3 мас.% на получаемый катализатор, формования гранул, сушки и прокалки. Далее гранулы активируют раствором кислоты с концентрацией 0,1-0,3 н при 70-90°С, в течение 1,0-1,5 ч, гранулы промывают, высушивают и прокаливают. Изобретение обеспечивает повышение конверсии диэтилбензолов, выхода этилбензола, повышение прочности катализатора. 3 н. и 3 з.п. ф-лы, 1 табл., 10 пр.

Изобретение относится к способу получения цеолита типа ZSM-12 со структурой MTW, который характеризуется тем, что смешивают водный раствор с рН = 8.5-9.5, содержащий соединение алюминия и темплат, в качестве которого применяют соединение общей формулы (I), который доводят сухой щелочью или водным раствором щелочи до рН = 11.5-13.5, и водный раствор, содержащий соединение кремния, полученные растворы смешивают до получения гелеобразной массы, при этом смесь растворов готовят исходя из соблюдения следующих мольных соотношений применяемых компонентов: темплат/SiО2 = 0.06-0.15, SiО2/Al2О3 = 50-300, H2O/SiО2 = 4-16, Ме2O/SiO2 = 0.05-0.15, где Me2O может обозначать K2O (в перерасчете на KOH) или Na2O (в перерасчете на NaOH), до получения однородной гелеобразной массы, которую оставляют на 60-90 минут при комнатной температуре для формирования первичной структуры геля; проводят кристаллизацию полученной гелеобразной массы в течение 96-120 часов при температуре 145-155°С с последующим выделением кристаллического продукта, его промыванием дистиллированной водой до достижения фильтрата рН = 9.0-9.5, высушиванием до постоянного веса и отжигом при 500±10°С в течение 8-12 часов; затем проводят реакцию ионного обмена водным раствором соли аммония с последующим выделением продукта, промыванием его дистиллированной водой до достижения фильтрата рН = 7.8-8.3, высушиванием до постоянного веса и прокаливанием при 450±10°С в течение 4-7 часов; при этом в качестве соединения кремния используют растворы коллоидного диоксида кремния или тетраэтилортосиликата; в качестве соединения алюминия используют октадекагидрат сульфата алюминия или наногидрат нитрата алюминия, или изопропоксид алюминия, или гексагидрат хлорида алюминия. Технический результат заключается в увеличении доли мезопор в готовом продукте до 12-25% от общего количества пор при получении алюмосиликатного цеолита. 7 з.п. ф-лы, 2 табл., 11 пр., 1 ил.

Изобретение относится к соединению - циклопропанированному производному норборнена - 3-циклопропилнортрициклан структурной формулы (1). Предложен также способ получения 3-циклопропилнортрициклана, включающий обработку 3-винилнортрициклана растворителем в присутствии соли палладия (II), охлаждение полученного раствора до (-15)-(-20)°С и перемешивание его в течение 2-2,5 часов при этой температуре, затем нагревание раствора до комнатной температуры и перемешивание в течение 20-24 часов, фильтрацию полученной реакционной смеси и последующее упаривание растворителя в вакууме 40-50 мм. рт.ст. при температуре 20-25°С с получением целевого продукта в виде бесцветной жидкости. Технический результат - получено новое соединение, которое может найти свое применение в качестве высокоэнергоемких топлив с высокими топливными характеристиками. 2 н. и 2 з.п. ф-лы, 2 ил., 2 табл., 4 пр.

Изобретение относится к области получения цеолитов и может быть применено для получения катализаторов на основе молекулярных сит, в частности, для алкилирования или трансалкилирования. Способ получения высокомодульного цеолита МСМ-22 включает смешение компонентов - источника кремния, источника алюминия, источника натрия и темплата в мольном соотношении SiO2/Al2O3 - 40-70, кристаллизацию в условиях перемешивания в автоклаве при повышенной температуре, выделение кристаллов цеолита путем фильтрации и промывки водой и прокаливание выделенного цеолита при температуре прокаливания 550-600°С. При смешении компонентов дополнительно вводят фторид натрия до мольного соотношения F/SiO2 - 0,1-0,3. Кристаллизацию проводят в течение 9-11 суток при температуре 150-170°C. Высушенный цеолит прокаливают в две стадии – сначала при температуре 300°C в течение 1-3 ч, затем при температуре 550-600°С в течение 1-6 часов. Обеспечивается повышение выхода высококристалличного цеолита до 47-62 %. 4 з.п. ф-лы, 1 ил., 1 табл., 13 пр.

Изобретение относится к способу получения титано-алюмо-силикатного цеолита типа (Ti/Al)-ZSM-12, который характеризуется тем, что смешивают водный раствор с рН = 8,5-9,5, содержащий соединение алюминия, соединение титана и темплат, который доводят сухой щелочью или водным раствором щелочи до рН = 11.5-13.5, и водный раствор, содержащий соединение кремния, до получения гелеобразной массы, при этом смесь растворов готовят исходя из соблюдения следующих мольных соотношений применяемых компонентов, в пересчете на оксиды Al2O3, TiO2, SiO2 : темплат/SiО2 = 0,06-0,15, SiО2/Al2О3 = 100-600, SiО2/TiO2 = 100-600, H2O/SiО2 = 4-16, TiO2 :Al2O3 = 1:1, а также K2O или Na2O/SiO2 = 0,05-0,15 в пересчете на соответствующие гидроксиды, до получения однородной гелеобразной массы, которую оставляют на 60-90 минут при комнатной температуре для формирования первичной структуры геля; проводят кристаллизацию полученной гелеобразной массы в течение 5-6 дней при температуре 145-155°С с последующим выделением кристаллического продукта, с последующим его промыванием дистиллированной водой до достижения рН фильтрата 9,0-9,5, высушиванием до постоянного веса и отжигом при 550±10°С в течение 8-12 часов; проводят реакцию ионного обмена водным раствором соли аммония с последующим выделением продукта, промыванием его дистиллированной водой до достижения рН фильтрата 7,8-8,3, высушиванием до постоянного веса и прокаливанием при 500±10°С в течение 4-7 часов. Технический результат заключается в разработке простого в исполнении, не затратного по времени способа синтеза цеолитного материала типа (Ti/Al)-ZSM-12 с содержанием атомов каркасного титана не более 20% и кислотностью от 700 до 1000 мкмоль/г. 11 з.п. ф-лы, 2 табл., 11 пр., 2 ил.

Изобретение раскрывает микроволноврй способ получения цеолита типа ZSM-12 со структурой MTW с кислотностью от 650 до 1000 мкмоль/г, выходом по массе продукта от 12 до 20 г и общим размером пор от 0.15 до 0.25 см3/г итогового продукта, в отличие от цеолита, синтезированного традиционным (гидротермальным) способом. Цеолит типа ZSM-12 со структурой MTW может быть применен для проведения каталитических процессов селективной изомеризации компонентов бензол-толуол-ксилольной фракции и ряда других ароматических углеводородов, в частности алкил-бензолов, а также диспропорционирования толуола и т.д. Синтезируемый продукт обладает следующими характеристиками: степень кристалличности – не менее 95%; содержание оксида натрия или оксида калия в H-форме итогового продукта – не более 0.05 мас.%; мольное соотношение SiО2/Al2О3 – от 50 до 300. 6 з.п. ф-лы, 11 пр., 3 табл., 1 ил.

Изобретение относится к способам получения молекулярного сита структуры МТТ. Способ получения цеолита со структурой МТТ включает приготовление реакционной смеси, содержащей катионы натрия или калия, источники оксида алюминия (Аl2О3) и оксида кремния (SiO2), воду и темплат N-метилпирролидон. При этом смесь растворов готовят исходя из соблюдения мольных соотношений применяемых компонентов в гидрогеле: SiO2/Al2O3=51-101, Н2O/SiO2 = 25-50, (Na+ или К+)/SiO2 от 0,31 до 0,7, темплат/ SiO2 от 0.2 до 0.7, с последующей выдержкой указанной смеси в герметичном реакторе. Обеспечивается получение цеолита МТТ с высоким содержанием алюминия SiO2/Al2O3 от 30 до 60 и объемом микропор 0,06-0,09 см3/г. 2 н. и 5 з.п. ф-лы, 1 ил., 1 табл., 14 пр.

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе метилзамещенного 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемкого топлива, в частности ракетного и для дальней авиации. Описан способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2-винилнорборнана, включающий проведение термической реакции Дильса-Альдера смеси экзо-/эндо-изомеров 2-винилнорборнана со смесью изомеров метилдициклопентадиена при нагревании и последующее гидрирование полученной смеси изомеров метилзамещенного 5-(2`-норборнанил)-норборнена в присутствии водорода и катализатора гидрирования, взятом в соотношении 0,5-10% масс. по отношению к метилзамещенному 5-(2`-норборнанил)-норборнену при комнатной температуре и давлении водорода 30-60 атм (варианты). Технический результат: улучшенный способ получения высокоплотного и высокоэнергоемкого компонента ракетного и авиационного топлива - метилзамещенного 2,2`-бис(норборнанила) с высоким выходом - до 92% при простоте способа, который не требует больших количеств катализатора, инертной атмосферы или безводных реагентов. 2 н. и 2 з.п. ф-лы, 2 табл., 8 пр., 4 ил.

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемого топлива, в частности ракетного и для дальней авиации. Описан способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2- винилнорборнана, включающий проведение термической реакции Дильса-Альдера смеси экзо-/эндо-изомеров 2-винилнорборнана с дициклопентадиеном при нагревании и последующее гидрирование полученной смеси изомеров 5-(2`-норборнанил)-норборнена в присутствии водорода и катализатора гидрирования, взятого в соотношении 0,5-10% масс. по отношению к 5-(2`-норборнанил)-норборнену, при комнатной температуре и давлении водорода 30-60 атм (варианты). Технический результат – повышение выхода полученного высокоплотного и высокоэнергоемкого компонента ракетного и авиационного топлива - 2,2`-бис(норборнанила) - до 92% при простоте способа, который не требует больших количеств катализатора, инертной атмосферы или безводных реагентов. 2 н. и 2 з.п. ф-лы, 3 ил., 1 табл., 8 пр.

Изобретение относится к энергетике, а именно к переработке природного газа. Энерготехнологический комплекс переработки природного газа содержит источник (2) природного газа, установку (3) криогенного разделения воздуха, СПГ-завод (4), блок (5) переработки газа и энергетическую установку (6). Установка (3) соединена с СПГ-заводом (4) линией подачи жидкого азота и с энергетической установкой (6) линией подачи жидкого кислорода. Источник (2) природного газа соединен с блоком (5) и с СПГ-заводом (4), который соединен с блоком (5) линией подачи отпарного газа и с камерой сгорания энергетической установки (6) линией подачи сжиженного природного газа. Энергетическая установка (6) включает в себя линию подачи воды в камеру сгорания и выполнена с возможностью обеспечения подачи пара из линии подачи воды, а также сконденсированного в энергетической установке (6) диоксида углерода в блок (5). Блок (5) выполнен с возможностью получения жидких углеводородов и метано-водородной смеси. Энергетическая установка (6) выполнена с возможностью передачи вырабатываемой энергии к блоку (5), СПГ-заводу (4) и к установке (3). Технический результат заключается в повышении КПД и улучшении экологических показателей комплекса. 2 н. и 8 з.п. ф-лы, 1 ил.

Изобретение относится к области синтеза цеолитного материала. Способ включает приготовление в тефлоновом вкладыше автоклава водного раствора, характеризующегося рН=11.5-13.5, содержащего соединение алюминия и темплат, с добавлением соединения кремния, взятых в мольных соотношениях темплат/Si=0.05-0.3, Si/Al=25-150; H2O/Si=5-25 до получения гелеобразной массы. Затем проводят кристаллизацию полученной массы с последующим выделением кристаллического продукта, его промывкой дистиллированной водой, высушиванием до постоянного веса и отжигом при 550±10°С в течение 6-10 часов. Далее проводят реакцию ионного обмена водным раствором соли аммония с последующим фильтрованием продукта, промывкой его дистиллированной водой, высушиванием до постоянного веса и прокаливанием при 500±10°С в течение 5-8 часов. Обеспечивается получение кристаллического цеолита со структурой MTW (типа ZSM-12) in situ со степенью кристалличности более 90% при сокращении времени синтеза. 11 з.п. ф-лы, 1 ил., 7 пр.

Настоящее изобретение относится к способу получения пропаналя гидроформилированием этилена в разбавленных газовых потоках. Способ заключается в том, что газовую смесь, содержащую от 5 до 25% по объему этилена, а также монооксид углерода, водород, диоксид углерода, метан, алканы С2-С4, алкены С3-С4, подают в реактор гидроформилирования, ведут реакцию в среде толуола в присутствии родий-фосфинового катализатора при температурах 70-90°С до окончания быстрого падения давления в реакторе, далее производят сбор газов в буферную емкость и осуществляют подачу газов из буферной емкости для компенсации падения давления в реакторе при гидроформилировании следующей порции сырья. Предлагаемый способ обеспечивает снижение расхода этиленсодержащего сырья и повышение выхода целевого продукта в расчете на единицу затрачиваемого сырья, снижение степени образования тяжелых побочных продуктов, а также расхода дорогостоящих катализаторов и реагентов и затрат на осуществление процесса. 1 ил., 1 табл., 3 пр.

Изобретение относится к способу получения алюмосиликатного цеолита со структурой MTW типа ZSM-12. Способ включает смешивание растворов, содержащих соединение алюминия, соединение кремния, темплат, выбранный из солей N1,N4-бис(2-гидроксиэтил)-N1,N1,N4,N4-тетраметилбутан-1,4-диаммония, N1,N6-бис(2-гидроксиэтил)-N1,N1,N6,N6-тетраметилгексан-1,6-диаммония, N1,N8-бис(2-гидроксиэтил)-N1,N1,N8,N8-тетраметилоктан-1,8-диаммония, и соединение щелочного металла с получением реакционной смеси, кристаллизацию полученной смеси в течение 4-5 суток при температуре 145-155°С, выделение образовавшегося кристаллического продукта, промывание дистиллированной водой до достижения рН фильтрата 9.0-9.5, высушивание до постоянного веса и отжиг при 500±10°С в течение 8-12 часов, проведение реакции ионного обмена с раствором соли аммония, выделение образовавшегося кристаллического продукта, промывание дистиллированной водой до достижения рН фильтрата 7.8-8.3, высушивание до постоянного веса и прокаливание продукта при 450±10°С в течение 4-7 часов. Изобретение обеспечивает увеличение доли мезопор алюмосиликатного цеолита типа ZSM-12 до 10-35% от общего количества пор при степени кристалличности более 90% и содержании оксида натрия не более 0.05%. 6 з.п. ф-лы, 1 ил., 6 пр.

Настоящее изобретение относится к способу получения алюмосиликатного чешуйчатого цеолита типа ZSM-12 со структурой MTW, который может быть использован в качестве адсорбентов, катализаторов и их компонентов. Способ включает смешивание водного раствора с рН=11,5-13,5, содержащего соединение алюминия и темплат, с водно-глицериновым раствором, содержащим соединение кремния, до получения гелеобразной массы, при этом смесь растворов готовят исходя из соблюдения следующих мольных соотношений применяемых компонентов: темплат/SiO2=0,05-0,15, C3H8O3/SiO2=0,3-0,7, SiO2/Al2O3=50-300, H2O/SiO2=4-10, Na2O/SiO2=0,05-0,15, кристаллизацию полученной гелеобразной массы в течение 5, 6 суток при температуре 145-155°С, промывку выделившегося кристаллического продукта дистиллированной водой, высушивание до постоянного веса, отжиг при 550±10°С в течение 8-12 часов, проведение реакции ионного обмена водным раствором соли аммония, промывание выделившегося продукта дистиллированной водой, высушивание до постоянного веса и прокаливание при 500±10°С в течение 4-7 часов. При этом в качестве соединения кремния применяют растворы коллоидного диоксида кремния или тетраэтоксисилана, в качестве соединения алюминия применяют октадекагидрат сульфата алюминия или наногидрат нитрата алюминия, или изопропоксид алюминия, или метаалюминат натрия, или гексагидрат хлорида алюминия, а в качестве темплата алкиламмонийную или этанол-алкиламмонийную соль. Изобретение обеспечивает получение чешуйчатого цеолита с толщиной чешуйки от 5 до 15 нм и длиной от 0,5 мкм до 1,2 мкм, с содержанием оксида натрия в готовом продукте не более 0,05 масс. %, за время, не превышающее 220 часов, со степенью кристалличности цеолита более 90%. 8 з.п. ф-лы, 2 ил., 7 пр.

Изобретение относится к области получения цеолитных катализаторов и может быть использовано в катализе, в частности катализе процессов алкилирования изобутана бутиленами. Предложено устройство для обработки цеолита путем ионного обмена, включающее автоклав, выполненный в виде цилиндрического корпуса, заполненного реакционной средой и снабженного герметичной крышкой, и помещенный в разъемный нагревательный кожух. Корпус автоклава дополнительно снабжен плотно прилегающим к его стенкам тефлоновым стаканом-вкладышем. Корпус закреплен в стационарной стойке с возможностью регулирования его угла наклона при установке автоклава под углом 30-60°. У основания стойки расположен двигатель, соединенный с одной стороны с задатчиком частоты вращения корпуса, а с другой - с вращательным механизмом, обеспечивающим вращение корпуса со скоростью до 3,0 оборотов в минуту внутри соосного ей стационарного нагревательного кожуха, который жестко соединен со стойкой. Крышка автоклава снабжена карманом для термопары, которая установлена в реакционную среду, и манометром. Также предложен способ получения катализатора алкилирования изобутана бутиленами путем последовательного ионного обмена цеолита типа NaX на кальций, лантан и аммоний, сушки и прокаливания. Ионный обмен ведут в гидротермальных условиях в среде водных растворов солей указанных катионов в указанном устройстве при установке автоклава под углом 30-60° при температуре 150-180°С в течение времени, необходимого для перевода исходного цеолита в форму, замещенную кальцием, лантаном и аммонием при содержании Na2O в конечном катализаторе менее 1 мас.%. Устройство и способ обеспечивают качественное проведение ионного обмена для получения катализатора без разрушения гранул катализатора и, как следствие, увеличение активности катализатора по конверсии олефинов, выходу алкилата, селективности по триметилпентанам. 2 н.п. ф-лы, 1 ил., 1 табл., 9 пр.

Изобретение относится к области физико-химического анализа и может применяться для выбора катализатора алкилирования изобутана бутиленами. Предложен cпособ оценки активности цеолитного катализатора алкилирования изобутана бутиленами, включающий определение его текстурных характеристик методом низкотемпературной адсорбции-десорбции азота - удельной площади поверхности, общего объема пор и объемов микро- и мезопор, расчет каталитических показателей катализатора - конверсии бутиленов (X) на основе уравнения: выхода алкилата на бутилены (Y) на основе уравнения: селективности по триметилпентанам (S) на основе уравнения: в которых Syд - удельная площадь поверхности, м2/г; Vоб - общий объем пор, м3/г, a N - отношение объемов микро- и мезопор, и выбор того образца катализатора, который отвечает расчетным показателям: X более 95 мас. %, Y свыше 195 мас. % и S не ниже 70 мас. %. Технический результат - возможность оценки каталитической активности образца цеолитного катализатора алкилирования изобутана бутиленами с точки зрения конверсии бутиленов, выхода алкилата и селективности (содержания в алкилате триметилпентанов) без проведения самого процесса алкилирования. 2 табл., 6 пр.

Изобретение относится к области клеящих материалов и, более конкретно, к способам получения полимерных клеев-расплавов, предназначенных для формирования адгезионных соединений между различными материалами, в том числе металлами, характеризующихся высокой прочностью образованной связи в расширенном температурном диапазоне применения. Предложен способ получения клея-расплава, включающий гидрирование нефтеполимерной смолы, полученной сополимеризацией мономеров - винилтолуола, дициклопентадиена, индена и α-метилстирола, смешение гидрированной нефтеполимерной смолы с сополимером этилена с винилацетатом и полиэтиленовым воском и охлаждение, отличающийся тем, что в качестве мономера дополнительно используют стирол при соотношении мономеров в смоле, мас.%: стирол 30-50; винилтолуол 10-20; дициклопентадиен 30-40; инден 4-12; α-метилстирол 4-8, гидрирование проводят до получения нефтеполимерной смолы, в которой гидрировано 10-55 мас.% ароматических фрагментов, а при смешении сначала гидрированную нефтеполимерную смолу растворяют в расплаве полиэтиленового воска с получением гомогенного раствора, затем в полученный раствор вводят сополимер этилена и винилацетата и перемешивают с помощью двухроторного смесителя при 110-130°С до получения однородной смеси при следующем соотношении компонентов клея-расплава, мас.%: гидрированная нефтеполимерная смола 10-40; полиэтиленовый воск 10-40; сополимер этилена с винилацетатом - остальное. Технический результат: повышение эластичности клея-расплава и его адгезии к металлу, расширение температурного диапазона применения и снижение его вязкости при экономичности получения. 1 табл., 6 пр.

Изобретение относится к гетерогенному катализатору окисления пара-ксилола до терефталевой кислоты, состоящий из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния типа МСМ-41 20,0-70,0; алюмосиликатные нанотрубки 30,0-80,0, и оксида металла, выбранного из ряда, включающего Mn, Со, Fe, Cu, Pd или их смесь, нанесенного на носитель в количестве 0,5-15,0% от массы катализатора, причем указанный носитель представляет собой единый структурированный композитный материал. Использование: нефтеперерабатывающая и нефтехимическая отрасли промышленности. Достигаемый технический результат заключается в повышении селективности по целевой терефталевой кислоте за счет сформированной системы пор и каналов наноструктурированного композитного носителя, обеспечивающего при окислении молекулярно-ситовой эффект благодаря бимодальному распределению пор по размерам. Высокая удельная площадь поверхности описываемого катализатора и, как следствие, увеличение площади контакта молекул сырья с каталитически-активными центрами, позволяет увеличить конверсию пара-ксилола и выход целевой терефталевой кислоты. 1 табл., 11 пр.

Изобретение относится к получению алюмосиликатного цеолита со структурой MTW (типа ZSM-12). Смешивают водные растворы, содержащие источник алюминия, источник кремния, структурообразующий агент (OSDA), выбранный из солей моноэтанол-N,N-диметил-N-этил-аммония или диэтанол-N-метил-N-этил-аммония, и источник щелочного металла. Получают реакционную смесь, имеющую следующее мольное соотношение компонентов (0,074-0,148) Na2O : 0,0035 Al2O3 : SiO2 : 0,12 OSDA : 12,1 H2O и рН смеси равный 11,5-13,5. Проводят кристаллизацию полученной смеси, выделяют кристаллический продукт, промывают дистиллированной водой до достижения рН фильтрата 9,0-9,5, высушивают и прокаливают при 550±10°С. Затем проводят реакцию ионного обмена с раствором соли аммония, высушивают до постоянного веса и прокаливают при 550±10°С. Изобретение обеспечивает получение цеолита со следующими характеристиками: степень кристалличности не менее 90%, размер кристаллитов - не менее 0,5 мкм, но не более 5 мкм; содержание оксида натрия в Н-форме цеолита - не более 0,05%; отношение SiO2/Al2O3 - от 50 до 300. 7 з.п. ф-лы, 2 ил., 8 пр.

Изобретение относится к получению этилена из этана путем каталитической окислительной конверсии с раздельной подачей сырья и окислителя и одновременного получения технического азота из воздуха и может использоваться в химической и нефтехимической отраслях промышленности. Предложен катализатор окислительного дегидрирования этана в этилен, содержащий оксиды ванадия и молибдена, нанесенный на оксид алюминия, который дополнительно модифицирован фтором при соотношении F/Al, равном 1/1000-1/10, при следующем соотношении компонентов, % мас.: оксиды ванадия и молибдена 5-40, модифицированный фтором оксид алюминия - остальное, при массовом отношении молибдена к ванадию, равном 3-6. Катализатор дополнительно может содержать оксид ниобия в количестве 0,1-5 % мас. Для получения катализатора оксид алюминия предварительно обрабатывают раствором фторида аммония с получением модифицированного фтором оксида алюминия. Затем растворяют в воде парамолибдат аммония и метаванадат аммония, добавляют модифицированный фтором оксид алюминия и подвергают гидротермальной обработке в течение 8-36 часов при температуре 100-180°С. Сушку ведут в две стадии - вначале путем провяливания на воздухе без нагрева, затем при нагреве до 100-200°С, а прокаливание в три стадии - 2-4 ч при 300-350°С, 2-3,5 ч при 500°С и 1-3,5 ч при 600-700°С. Технический результат: повышение селективности по этилену и его выхода. 2 н. и 3 з.п. ф-лы, 1 табл., 12 пр.

Настоящее изобретение раскрывает способ получения алюмосиликатного чешуйчатого цеолита со структурой MTW (типа ZSM-12). Чешуйчатый цеолит типа ZSM-12 (со структурой MTW) может быть применен для проведения каталитических процессов селективной изомеризации-трансалкилирования компонентов бензол-толуол-ксилольной фракции и ряда других ароматических углеводородов. Синтезируемый по настоящей методике цеолит обладает чешуйками на поверхности кристаллитов, полученные благодаря фенолфталеину. Синтезируемый продукт обладает следующими характеристиками: степень кристалличности - не менее 90%; содержание оксида натрия в Н-форме итогового продукта - не более 0.05%; отношение SiO2/Al2O3 - от 50 до 300; толщина чешуйки от 5 до 15 нм, длина чешуйки от 0.5 мкм до 1.2 мкм. Способ получения чешуйчатого цеолита типа ZSM-12 со структурой MTW характеризуется тем, что смешивают водный раствор с рН 11.5-13.5, содержащий соединение алюминия, темплат и фенолфталеин, с водным раствором, содержащим соединение кремния, до получения гелеобразной массы, при этом смесь растворов готовят исходя из соблюдения следующих мольных соотношений применяемых компонентов: темплат/SiO2=0.05-0.15, фенолфталеин/SiO2=0.01-0.05, SiO2/Al2O3=50-300, H2O/SiO2=4-15 до получения гелеобразной массы; проводят кристаллизацию полученной гелеобразной массы с последующим выделением кристаллического продукта, с последующим его промыванием дистиллированной водой, высушиванием до постоянного веса и отжигом при 550±10°С в течение 8-12 часов; затем проводят реакцию ионного обмена водным раствором соли аммония с последующим выделением продукта, промыванием его дистиллированной водой, высушиванием до постоянного веса и прокаливанием при 500±10°С в течение 4-7 часов. Технический результат предлагаемого способа - получение цеолита (степень кристалличности более 90%) чешуйчатой структуры с толщиной чешуйки от 5 до 15 нм и длиной от 0.5 мкм до 1.2 мкм, с содержанием оксида натрия в готовом продукте не более 0.05%, за время, не превышающее 220 часов. 14 з.п. ф-лы, 2 ил., 7 пр.

Группа изобретений относится к области получения гетерогенных родийсодержащих катализаторов для процесса гидроформилирования непредельных соединений, а именно к получению закрепленных родиевых комплексов на поверхности гибридных материалов, имеющих свободные аминогруппы, также группа изобретений относится к способу синтеза катализаторов на основе нерастворимых материалов с модификацией поверхности подложки фосфиновыми лигандами за счет прямого ковалентного связывания и последующим закреплением родия на поверхности, и к способу использования гетерогенных катализаторов в органическом катализе, в частности в реакции гидроформилирования непредельных соединений. В качестве нерастворимого носителя для создания гетерогенных катализаторов используются гибридные материалы, представляющие собой силикагель с закрепленным на поверхности полиаллиамином либо полиэтиленимином; на поверхность материала привит фосфиновый лиганд, родий закреплен за счет его связывания с атомами фосфора. При этом гетерогенные катализаторы обладают высокой активностью в реакции гидроформилирования этилена и могут быть легко выделены из смеси жидких реагентов и продуктов реакции и использованы многократно без существенной потери каталитической активности. Группа изобретений обеспечивает расширение арсенала катализаторов, используемых в нефтехимическом синтезе, в частности в гидроформилировании непредельных соединений. Группа изобретений может быть использована в органическом и нефтехимическом синтезе для проведения каталитического гидроформилирования очищенного этилена, а также этилена, содержащегося в газовых смесях, например, в «сухом» газе каталитического крекинга, без предварительного выделения этилена, с получением пропаналя или диэтилкетона. Техническим результатом заявляемой группы изобретений является разработка способа синтеза гетерогенных родийсодержащих катализаторов и способа получения пропаналя и диэтилкетона с многократным использованием катализаторов после их отделения от продуктов реакции. Катализаторы содержат 0,5-3% родия по массе, имеют высокую активность в реакции гидроформилирования этилена (конверсия субстрата 80-99% за проход), и они могут быть использованы многократно без потери каталитической активности. 5 н.п. ф-лы, 4 ил., 4 пр.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен микро-мезопористый катализатор изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, мас.%: цеолит типа ZSM-5 -10,0-75,0, цеолит типа ZSM-12 - 5,0-70,0, гамма-оксид алюминия - остальное до 100 и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора. Технический результат заключается в использовании в качестве активной фазы носителя комбинированного цеолита ZSM-5/ZSM-12, который способствует реализации бимолекулярного механизма изомеризации метаксилола и вовлечению в него продуктов диспропорционирования этилбензола, что приводит к повышению конверсии последнего и выхода целевого пара-ксилола. Использование в структуре активной фазы носителя комбинированного цеолита ZSM-5/ZSM-12 позволяет снизить долю реакций диспропорционирования ксилолов до толуола, протекающих в микропорах цеолита ZSM-5, и, как следствие, сократить потери ксилолов. 1 табл., 6 пр.

Изобретение раскрывает композицию противоизносной присадки к топливам для реактивных двигателей содержащая олеиновую кислоту и антиокислительную присадку Агидол-1, в качестве олеиновой кислоты содержит техническую олеиновую кислоту, представляющую собой смесь ненасыщенных жирных кислот с содержанием олеиновой кислоты 57,7-64,9 мас.%, линолевой кислоты 17,8-20,8 мас.%, линоленовой кислоты 1,2-8,2 мас.% и общим содержанием жирных кислот 97,4-98,3 мас.% и дополнительно содержит гидроочищенный компонент авиационного топлива для реактивных двигателей при следующем соотношении компонентов, мас.%: олеиновая кислота техническая - 70,0-80,0, Агидол-1 - 0,3-0,5, гидроочищенный компонент авиационного топлива для реактивных двигателей - остальное. Технический результат: получение композиции противоизносной присадки для реактивных топлив с улучшенной смазочной способностью и стабильностью при хранении. 6 табл.

Изобретение относится к области катализаторов для процессов изомеризации ксилолов и сырья, содержащего ароматические углеводороды С-8, и может быть использовано в таких отраслях промышленности, как нефтехимия и нефтепереработка. Микро-мезопористый катализатор изомеризации ксилолов состоит из носителя, содержащего: цеолит типа ZSM-5, упорядоченный мезопористый оксид кремния типа МСМ-41, гамма-оксид алюминия и металла платиновой группы, нанесенного на носитель. Причем активная фаза носителя, состоящая из цеолита типа ZSM-5 и упорядоченного мезопористого оксида кремния типа МСМ-41, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезо-порами упорядоченного оксида кремния типа МСМ-41 и микропорами цеолита типа ZSM-5. Технический результат заключается в повышении эффективности катализатора изомеризации ксилолов, а именно, в росте активности катализатора, приводящей к увеличению конверсии сырья и выхода целевого пара-ксилола. 1 табл., 6 пр.

Изобретение относится к области нефтепереработки и нефтехимии, а именно, к удалению отравляющих соединений для катализаторов нефтепереработки из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения дизельного топлива и других нефтепродуктов.Способ совместного извлечения мышьяка и хлора из нефтяных дистиллятов осуществляют путем гидроочистки при температуре 360°С и давлении водорода 5 МПа в присутствии каталитически-сорбционных материалов А и Б, загруженных в реактор послойно, так что слой каталитически-сорбционного материала А расположен под слоем каталитически-сорбционного материала Б. Каталитически-сорбционный материал А получают путем добавления предварительно приготовленной смеси тетраэтоксисилана и втор-бутоксида алюминия в раствор темплата -триблоксополимера этилен- и пропиленоксида - в разбавленной соляной кислоте, перемешивания и выдерживания при 90-100°С с получением мезопористого носителя. Затем формуют экструдаты с добавлением псевдобемита и пропитывают их растворами гептамолибдата аммония и нитрата никеля, взятыми в количестве, обеспечивающем содержание в катализаторе 8-14% молибдена и 4-8% никеля в пересчете на оксиды, Каталитически-сорбционный материал Б получают путем добавления предварительно приготовленной смеси тетраэтоксисилана и их втор-бутоксида алюминия в раствор темплата - триблоксополимера этилен- и пропиленоксида - и мезитилена в разбавленной соляной кислоте, перемешивания, добавления фторида аммония и выдерживания при 90-100°С с получением мезопористого носителя. Затем формуют экструдаты с добавлением псевдобемита и пропитывают их растворами ацетата магния и нитрата никеля, взятыми в количестве, обеспечивающем содержание в катализаторе 5-10% магния и 5-10% никеля в пересчете на оксиды. Технический результат - высокая степень извлечения мышьяка (до остаточного содержания 0,038 ррm) и хлора (до остаточного содержания<0.3 ррm) в отсутствие гидрокрекинга целевой фракции при совместном удалении мышьяка и хлора из нефтяных дистиллятов. 3 табл.

Настоящее изобретение относится к способу приготовления каталитически-сорбционного материала для удаления хлора, включающему синтез инертного носителя, его пропитку растворами нитрата никеля и ацетата магния, причем в качестве компонента носителя, повышающего структурные характеристики, такие как объем пор и удельную площадь поверхности, используют мезопористое соединение одного из типов: SBA-15, MCF, Al-TUD, в количестве 25-35% масс., которое добавляют к порошку бемита, пептизируют разбавленным раствором азотной кислоты, высушивают и прокаливают при 550°С. Также изобретение относится к способу удаления хлороорганических соединений из легкой дизельной фракции, характеризующемуся тем, что указанный выше каталитически-сорбционный материал загружают в стальной трубчатый реактор, подают сырье при температуре 340-380 °С и давлении водорода 4,0-6,0 МПа с объемной скоростью 1,0-4,0 ч-1, и водородсодержащий газ с объемным соотношением водорода к сырью 600 : 1. Технический результат – приготовление каталитически-сорбционного материала удаления соединений хлора из средний дистиллятов нефти с высокими показателями удельной поверхности, объема пор и механической прочности, приводящего к эффективности удаления органических соединений хлора из средних нефтяных дистиллятов путем их превращения в хлористый водород и углеводороды и сорбции хлористого водорода на поверхности мезопористого материала, содержащего оксид магния и оксид никеля. 2 н.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к области нефтепереработки и нефтехимии, а именно к удалению мышьяка и его соединений из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения дизельного топлива и других нефтепродуктов. Предлагается способ получения каталитически-сорбционного материала для извлечения мышьяка из нефтяных дистиллятов, включающий получение мезопористого носителя из смеси, содержащей органическое соединение кремния и соединение алюминия, пропитку полученного носителя растворами гептамолибдата аммония и нитрата никеля. Способ отличается тем, что получение мезопористого носителя включает получение раствора темплата - триблоксополимера этилен- и пропиленоксида в разбавленной соляной кислоте, добавление в него предварительно приготовленной смеси тетраэтоксисилана и втор-бутоксида алюминия, перемешивание и выдерживание при 90-100°С, отношение кремния к алюминию в полученном мезопористом носителе составляет 40-100, а растворы гептамолибдата аммония и нитрата никеля берут в отношении, обеспечивающем содержание в катализаторе 8-14% молибдена и 4-8% никеля в пересчете на оксиды. Также заявляется способ извлечения мышьяка из нефтяных дистиллятов путем гидроочистки в присутствии разработанного каталитически-сорбционного материала при температуре 340-380°С и давлении водорода 5-9 МПа. Технический результат изобретения заключается в получении каталитически-сорбционного материала, обеспечивающего высокую степень извлечения мышьяка из фракций нефтяных дистиллятов в отсутствии гидрокрекинга целевой фракции, благодаря чему достигается высокий выход целевых фракций, снижение образования кокса и легких газов. 2 н.п. ф-лы, 2 ил., 4 табл.

Настоящее изобретение относится к способу переработки нефтезаводских газов в ценные химические продукты и компоненты моторных топлив. Способ заключается в том, что на первой стадии проводят мембранно-абсорбционное выделение этилена из нефтезаводского газа с применением водных растворов солей переходных металлов, оставшуюся смесь направляют на вторую стадию окислительной конверсии кислородом или воздухом, которая проводится в струевом проточном реакторе при температурах 700-800°С, давлениях 1-3 атм и времени пребывания 1-2 с, затем продукты первой и второй стадий объединяют и подвергают гидроформилированию или карбонилированию с использованием катализаторов на основе Rh и Pd, при этом продукты гидроформилирования или карбонилирования полностью или частично подвергают конденсации с последующим гидрированием с получением высших спиртов. Предлагаемое изобретение позволяет получить ценные продукты с использованием простой технологии. 1 ил., 3 табл., 3 пр.

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способам обессеривания сырой нефти пероксидом водорода с использованием каталитических систем на основе неорганических и органических кислот с последующим выделением продуктов окисления сульфоксидов и сульфонов. Описан способ обессеривания сырой нефти, включающий окисление нефти каталитической окислительной композицией, включающей пероксид водорода концентрацией не менее 20 мас.%, взятый в 2-6 кратном мольном избытке по отношению на один моль содержащейся серы в нефти, и органическую или минеральную кислоту, имеющую pKa - 3-4,76 и не разлагающую пероксид водорода, взятую в мольном соотношении 0,2-5 по отношению к одному молю содержащейся серы в нефти, при этом на одну часть каталитической композиции берут от 10 до 500 мас. частей сырой нефти, полученную смесь обрабатывают путем постоянного перемешивания на магнитной мешалке до полного протекания реакции окисления, после чего из реакционной смеси удаляют остатки окислительной композиции и продукты окисления. Технический результат - высокая степень удаления серы из сырой нефти, окисление трудноокисляемых сернистых соединений, минимальные негативные влияния на состав нефти, более простое аппаратное оформление, протекание реакции в мягких условиях 20-70°С, а также возможность выделения концентрата сульфоксидов и сульфонов в качестве ценного продукта. 8 з.п. ф-лы, 5 пр., 1 табл.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор для изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: упорядоченный алюмосиликат типа Аl-МСМ-41 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора. Активная фаза носителя состоит из упорядоченного алюмосиликата типа Аl-МСМ-41 и алюмосиликатных нанотрубок и представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа Аl-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок. Достигаемый технический результат заключается в формировании системы пор и каналов для обеспечения высокой термической стабильности и активности катализатора, что обусловлено использованием иерархического алюмосиликатного материала. 1 ил., 1 табл., 4 пр.

Предлагаемое изобретение относится к способу получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья, который включает введение водного раствора прекурсора катализатора в смесь углеводородов с последующим его сульфидированием. Для получения смеси углеводородов в предварительно нагретый до температуры не менее 200°С вакуумный остаток вводят полиэтилен высокого давления до его содержания 10-25% мас. от вакуумного остатка и перемешивают их в атмосфере водорода при нагреве до 320-360°С. Водный раствор прекурсора катализатора вводят в смесь углеводородов до содержания молибдена 10-30% мас. от полиэтилена путем капельного термолиза при той же температуре в атмосфере водорода при механическом перемешивании со скоростью не менее 500 об/мин. Сульфидирование осуществляют при той же температуре паром диметилсульфида в токе водорода при молярном отношении серы к молибдену в прекурсоре катализатора S/Mo=2.0-10 до образования размеров частиц в суспензии молибденсодержащего композитного катализатора 2-50 нм. Технический результат заключается в уменьшении размера частиц катализатора в суспензии до наноразмерного, повышении стабильности суспензии, снижении расхода катализатора при гидроконверсии и снижении образования кокса. 1 з.п. ф-лы, 2 ил., 2 табл., 14 пр.

Изобретение относится к технологии производства гетерогенных катализаторов. Предложен способ получения катализатора алкилирования изобутана бутиленами на основе цеолита, включающий ионный обмен путем обработки цеолита типа фожазит, гранулированного без связующего, при 70÷90°C с одновременным ультразвуковым воздействием при силе тока 1-5 А в течение 1-2 ч вначале водным раствором соли кальция, затем двукратно водным раствором соли редкоземельного элемента и после этого водным раствором соли аммония, водными растворами солей кальция, редкоземельного элемента и аммония при повышенной температуре в течение времени, необходимого для перевода цеолита из натриевой формы в редкоземельную кальциевую форму. После каждого ионного обмена проводят сушку и прокаливание в две стадии при температуре 300-500°C в течение 1,5-2,5 ч. Этим способом получают катализатор алкилирования изобутана бутиленами на основе цеолита типа фожазит, содержащий оксид алюминия и диоксид кремния при молярном отношении диоксид кремния:оксид алюминия, равном 2,7, оксиды натрия, кальция, редкоземельного элемента при следующем соотношении компонентов, % масс.: оксид натрия - 0,1÷0,8, оксид кальция - 1,3÷3,0, оксид редкоземельного элемента - 18,8÷22,9, указанный цеолит - остальное. Алкилирование изобутана бутиленами проводят при температуре 60÷95°C, давлении 0,85-1,8 МПа, объемной скорости подачи сырья по олефинам 0,2÷0,6 ч-1, отношении изобутан:бутилены в сырье 5÷27:1 и длительности подачи сырья 4-36 ч. Технический результат заключается в увеличении активности катализатора по конверсии олефинов, производительности по алкилату и выхода целевого продукта (алкилбензина) на 10÷15% масс. 3 н. и 2 з.п. ф-лы, 1 табл., 11 пр.

Изобретение относится к двум вариантам способа получения высокоплотного реактивного топлива для сверхзвуковой авиации. Один из вариантов способа включает фракционирование тяжелой смолы пиролиза с выделением дистиллятной фракции с температурой кипения до 330°C, гидроочистку дистиллятной фракции при температуре 340-360°C и давлении 4-6 МПа, гидрирование ведут при температуре 200-230°C и давлении 3-6 МПа и вывод продукта. Гидроочистку ведут в присутствии алюмо-никель-молибденового сульфидного катализатора гидроочистки, полученного осернением оксидной формы катализатора 1%-ным раствором диметилдисульфида в прямогонной дизельной фракции. Гидрирование ведут в присутствии катализатора гидрирования, содержащего 2% мас. палладия на углероде. Выделенную дистиллятную фракцию с температурой кипения до 330°C по второму варианту изобретения перед гидрообработкой смешивают с прямогонной фракцией газойля в соотношении 30:70 мас. Технический результат изобретения - снижение (вплоть до отсутствия) содержания серы и ароматических углеводородов в реактивном топливе при снижении давления гидрообработки, простоте, экономичности и безотходности способа получения реактивного топлива. 2 н.п. ф-лы, 10 табл., 2 пр.

Изобретение раскрывает способ получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия K2O, оксид магния MgO и γ-оксид алюминия γ-Al2O3, характеризующийся тем, что в качестве органического вещества используют диметиловый эфир ДМЭ, или смесь ДМЭ с метанолом, или смеси ДМЭ с метанолом и водой с использованием разбавителя при мольном отношении разбавитель : кислородсодержащее органическое вещество = 0-10:1, применением в качестве разбавителя азота или синтез-газа или водяного пара, превращение проводят при температуре 370-420°C в присутствии предварительно активированного катализатора следующего состава, мас.%: ZnO 20-24 MgO 4-6 K2O 0,15-0,30 γ-Al2O3 остальное Технический результат - расширение сырьевой базы для производства дивинила, использование диметилового эфира, производимого из альтернативных источников углеродсодержащего сырья, для нефтехимического синтеза. 2 з.п. ф-лы, 38 пр.

Изобретение относится к процессам получения светлых нефтеполимерных смол гидрированием при повышенной температуре при давлении водорода в присутствии катализатора и может быть использовано для получения компонентов адгезивов и клеев-расплавов, а также в пищевой и полиграфической промышленности. Способ получения катализатора гидрирования нефтеполимерных смол включает получение прекурсоров - 2-этилгексаноата никеля и гексакарбонила молибдена или вольфрама, их растворение в углеводородном растворителе до концентрации от 0.06 до 10% в расчете на молибден или вольфрам от массы раствора, введение в раствор прекурсора сульфидирующего агента - элементной серы при отношении S:(Mo или W) от 1:1 до 10:1 и получение из раствора ex situ ненанесенного сульфидного наноразмерного катализатора. Его получение ведут в автоклаве при температуре от 350 до 400°C и давлении водорода от 20 до 60 атм. Растворителем может быть бензол, или толуол, или н-гептан, или лимонен, или их смесь. Гидрирование нефтеполимерных смол в растворителе в присутствии этого катализатора ведут при температуре от 280 до 320°C и давлении от 10 до 70 атм, предпочтительно от 20 до 50 атм. Нефтеполимерные смолы предварительно растворяют в указанном растворителе, содержащем суспензию заявленного катализатора до концентрации от 5 до 80 мас. %, предпочтительно от 10 до 40 мас. %. Катализатор предпочтительно без регенерации возвращают в цикл. Технический результат - повышение степени гидрирования ароматических и олефиновых фрагментов нефтеполимерной смолы, значительное улучшение цвета нефтеполимерной смолы, возможность осуществления процесса без регенерации катализатора. 2 н. и 5 з.п. ф-лы, 6 ил., 3 табл.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен термостабильный катализатор изомеризации ароматических углеводородов С-8, состоящий из носителя, содержащего, мас.%: упорядоченный мезопористый оксид кремния - 10,0-75,0, алюмосиликатные нанотрубки - 5,0-70,0, гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора, причем используемые в носителе упорядоченный мезопористый оксид кремния и алюмосиликатные нанотрубки представляют собой структурированный композит. Технический результат заключается в повышении конверсии этилбензола, повышении содержания в смеси ксилолов пара-ксилола, минимизации потерь целевых ксилолов, повышении термостабильности катализатора. 2 табл., 4 пр.

Изобретение относится к способу получения высокоплотного реактивного топлива. Способ получения высокоплотного реактивного топлива для сверхзвуковой авиации осуществляют путем гидрирования фракций каменноугольной смолы при повышенных температуре и давлении в присутствии водорода и катализатора, представляющего собой сульфид вольфрама WS2, промотированный сульфидом никеля NiS и нанесенный на носитель - оксид алюминия. Способ отличается тем, что в качестве фракций каменноугольной смолы используют поглотительное масло каменноугольной смолы, гидрирование и гидрообессеривание проводят в одну стадию в одном реакторе при температуре 340-365°C при объемной скорости подачи сырья 0,25-0,5 ч-1, а указанный катализатор подготавливают путем осернения 1%-ным раствором диметилдисульфида в прямогонной дизельной фракции при температуре 340-390°C и давлении водорода 3-8 МПа до получения следующего состава катализатора после осернения, % мас.: никель 12,0-22,0, вольфрам 20,0-25,5, сера 15,0-21,0, окись алюминия остальное, причем соотношение NiS : WS2 составляет (1,8-2,4):1,0. Технический результат: снижение содержания ароматики в топливе, увеличение глубины обессеривания получаемого топлива, повышение плотности топливной фракции и снижение температуры начала ее кристаллизации, а также способ экономичен за счет снижения себестоимости получаемого топлива при проведении его в одну стадию с получением конечного результата. 1 з.п. ф-лы, 7 табл., 17 пр.

Изобретение относится к способу получения компонентов транспортных топлив углеводородного состава из сырья биологического происхождения. Способ одностадийного получения компонентов транспортного топлива углеводородного состава из липидных фракций базидиальных грибов включает пропускание смеси водорода и указанного сырья биологического происхождения через неподвижный слой катализатора на основе мезопористого алюмосиликата типа Al-HMS в соотношении SiO2/Al2O3 от 5 до 40, площадью поверхности более 600 м2/г, объемом пор в диапазоне от 0,5 до 1,5 см3/г, средним диаметром пор 40 , который модифицирован одним и/или более металлами, выбранными из ряда Pd, Pt, Ni, Ru, Rh, Mo, W, Co, в количестве не более 5 мас. %, в температурном диапазоне от 300 до 400°С, давлении 2,0-10,0 МПа, массовой скорости подачи сырья 0,5-2,0 ч-1, объемном соотношении водорода и сырья, от 1000:1 до 1500:1. Технический результат - высокая активность катализатора в одностадийном процессе деоксигенации и изомеризации сырья, что позволяет достичь 98-100%-ной конверсии возобновляемого сырья растительного происхождения с высоким выходом алканов и достижением отношения изо/н-парафинов от 2,6 и выше. 1 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к получению и использованию для каталитического гидроформилирования олефинов фосфинсодержащих лигандов общей формулы: где R выбран из групп COOH, CONHC(CH2OH)3 или солюбилизирующих групп, содержащих от 4 до 12 гидроксильных групп. Указанные лиганды получают путем модификации бромзамещенного каликсарена по реакции Арбузова с последующим пропаргилированием полученного фосфиноксидсодержащего каликсарена до получения соответствующих пропаргилсодержащих каликсаренов, которые модифицируют с использованием трис(бензоилоксиметил)метиламида 2-азидоэтановой кислоты до получения соответствующего триазолсодержащего каликсарена, после чего проводят восстановление фенилсиланом с последующим гидролизом. Предложен новый эффективный способ получения новых лигандов с улучшенной растворимостью в спиртах и размером молекулы более 2 нм, что делает более эффективным процесс получения альдегидов и ацеталей в реакциях каталитического гидроформилирования, а также позволяет отделять каталитический комплекс от продуктов реакций с возможностью повторного использования. 4 н. и 5 з.п. ф-лы, 5 пр.

 


Наверх