Патенты автора Караваев Дмитрий Михайлович (RU)

Изобретение относится к способу графитизации из жидкого углеводорода. Способ заключается в размещении в жидком углеводороде деталей из графита, в подключении к плюсу токопровода сварочного приспособления одной из деталей в форме стержня, подключение к минусу сварочного приспособления другой детали, в нагревании при атмосферном давлении деталей при высокой температуре, в образовании электрической дуги между деталями, в испарении жидкого углеводорода с образованием углерода на поверхности деталей. При этом способ характеризуется тем, что деталь, подключённую к минусу, выполняют в виде пластины, функционирующей в качестве подложки, обе детали размещают в жидком углеводороде с зазором друг под другом, деталь-стержень устанавливают с возможностью возвратно-поступательного перемещения при нагреве как в горизонтальной, так и в вертикальной плоскостях относительно детали-пластины, проводят нагрев током 30–60 А, образуют слои графита из жидкого углеводорода – масла на поверхности детали–подложки, наращивают слои в зазоре между деталями с образованием графита со структурой типа графен, при этом используют обе детали с одним и тем же электрохимическим потенциалом, деталь в форме стержня используют в качестве катализатора процесса, в качестве основного сырьевого материала для получаемых заготовки или изделия используют жидкий углеводород. Использование предлагаемого способа позволяет получать монолитное изделие или заготовки из графита. 9 ил.

Изобретение относится к области переработки полимерных материалов методом объемно деформационного разрушения и может быть использовано при получении дисперсного порошка из крупных гранул термопластичного полимера в виде хлопьев или пористых рыхлых червеобразной формы элементов. Измельчитель полимерных материалов содержит горизонтально установленный полый корпус цилиндрической формы, разделенный на зону подачи материала и зону разрушения материала, имеющий сквозное отверстие для загрузки материала и сквозное отверстие для выгрузки материала, вал, расположенный в корпусе по его оси и соединенный с приводом, шнек, соосно установленный на валу, и ротор, установленный на валу, обеспечивающий ступенчатую систему разрушения, регулируемую зазорами между сопрягаемыми поверхностями разрушения. Ротор установлен на валу соосно оси вала вдоль зон подачи и разрушения материала с возможностью возвратно-поступательного и вертикального перемещения в процессе измельчения относительно корпуса и выполнен из непрерывно переходящих относительно друг друга двух частей. При этом первая часть выполнена в виде многозаходного шнека с заостренными кромками элементов, которые выполнены в заходной части под углом и в направлении по часовой стрелке, с плавным переходом ко второй - выходной части под углом и в направлении против часовой стрелки. Вторая часть выполнена в виде усеченного конуса, обращенного меньшим основанием к первой части ротора. На поверхности второй части выполнены насечки под тем же углом и в том же направлении к оси вала, что и угол выходной части многозаходного шнека. Причем насечки имеют в сечении треугольную форму. В корпусе жестко закреплен статор, выполненный в виде втулки цилиндрической формы, внутренняя поверхность которой в сечении выполнена в виде двух сопряженных между собой меньшими основаниями усеченных конусов, образуя в процессе измельчения совместно с первой и второй частями ротора две зоны разрушения. При этом первый усеченный конус выполнен с зубчатой поверхностью и с протяженностью, равной протяженности первой части ротора, вершины зубьев направлены против часовой стрелки. Второй усеченный конус выполнен с насечками треугольной формы в направлении, совпадающем с направлением насечек в роторе, и протяженностью, равной протяженности второй части ротора. Ротор к сопряженной с ним поверхности статора установлен с зазорами, расширяющимися к торцам ротора и статора. Торец корпуса закрыт сменной съемной заглушкой с возможностью образования камеры и регулирования ее объема, обеспечивающей бесперебойную выгрузку пористого, имеющего развитую поверхность материала и форму в виде хлопьев или червеобразной формы. Техническим результатом является получение рыхлых пористых элементов, обладающих высокой степенью адгезии к пористому наполнителю типа терморасширенного графита, для получения электропроводящего композита и упрощение конструкции.11 ил.

Изобретение относится к технике прессования, в частности к устройствам двухстороннего прессования порошков, но преимущественно пористых материалов с малой насыпной плотностью, типа терморасширенного графита, для получения прутков, стержней различного диаметра и композиции, содержащей металлическую втулку с уплотненным в ней терморасширенным графитом для получения электрода. Устройство для прессования порошков включает пресс-форму мундштучного формования прутков, матрицу цилиндрической формы, закрепленную с обоймой, и пуансон. Дополнительно оно снабжено второй аналогичной пресс-формой, при этом пресс-формы расположены соосно и соединены металлической втулкой и направляющими стержнями. В качестве металлической втулки использована электропроводная трубка. Обоймы выполнены разъемными и дополнительно имеют полости цилиндрической формы для размещения в них матриц, сопряженные с большим основанием конусной части отверстий обойм. Пуансоны снабжены съемными ограничителями перемещения в обоймах в направлении от торцов к центральной части под углом, а втулка, как элемент устройства, выполнена с гладкой внутренней поверхностью. Технический результат, достигаемый при использовании изобретения, заключается в возможности получения монолитного электропроводящего изделия в виде прутка из терморасширенного графита (ТРГ) или электропроводящей композиции, содержащей ТРГ в металлической оболочке с равномерным распределением свойств, и повышения адгезионной связи между компонентами композиции; а также расширения технологических возможностей устройства. 2 з.п. ф-лы, 7 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения линейных перемещений образца под воздействием температуры из различных материалов и для определения содержания углерода в углеродистых сталях. Дилатометр содержит измерительный узел и нагревательную печь, подключенную к блоку регистрации температуры и блоку управления температурой. Измерительный узел и нагревательная печь установлены горизонтально. Измерительный узел включает индикаторную головку с неподвижной и подвижной осями, соединенный с ее подвижной осью толкатель, выполненный в виде монолитного цилиндра из кварца с диаметром, равным внутреннему диаметру кварцевой пробирки, и с плоской нижней торцевой поверхностью, контактирующей с образцом, кварцевую пробирку для исследуемого образца, установленную в нагревательную печь. В кварцевой пробирке размещен кварцевый упор с диаметром, равным внутреннему диаметру кварцевой пробирки, контактирующий с образцом. Индикаторная головка и кварцевая пробирка соединены переходником, выполненным в виде полового цилиндра. На торце переходника со стороны крепления кварцевой пробирки установлен ограничитель, выполненный в виде кольца. Переходник установлен с возможностью перемещения вдоль оси кварцевой пробирки и образования зазора между нагревательной печью и ограничителем переходника. Технический результат - повышение точности определения температурного коэффициента линейного расширения образцов, изготовленных из различных материалов, и расширение функциональных возможностей устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, в частности к устройствам для определения насыпной плотности пористых, рыхлых волокон или волокноподобных материалов, легко делящихся на фрагменты и сцепляемых друг с другом и соответственно не ссыпаемых в мерный цилиндр через стандартную воронку. Устройство содержит мерный цилиндр, выполненный по ГОСТу 1770, воронку стеклянную с цилиндрической частью, выполненную по ГОСТу 25336 и размещенную над мерным цилиндром, емкость с исследуемым материалом, сопло, закрепленное на штативе шарнирно или гибким элементом с возможностью перемещения по штативу. Емкость с исследуемым материалом выполнена переменного сечения из двух частей, плавно переходящих одна в другую, причем одна часть выполнена шарообразной формы, вторая часть - в виде куполообразного козырька, имеющего открытое круглое основание, плотно соединенное с большим основанием воронки, в нижней боковой части куполообразного козырька емкости выполнено сквозное отверстие. Сопло установлено на штативе с возможностью вхождения его выходной части в упомянутое сквозное отверстие емкости, причем выходная часть сопла выполнена с возможностью перемещения в емкости под разными углами, а часть шарообразной формы емкости, примыкающая к основанию куполообразного козырька, является приемником поступающих при отборе проб исследуемых элементов материала. Техническим результатом является обеспечение возможности провести достоверно, оперативно, экологически чисто определение насыпной плотности пористого материала в виде короткого прямого волокна, например, асбеста или пористого волокноподобного в виде червячка материала, например терморасширенного графита, основываясь на ГОСТ Р 50019.1-92 (Графит. Метод определения насыпной плотности). 3 ил.

Изобретение относится к области материаловедения и может быть использовано при исследовании структурного состояния, морфологии поверхности образцов из композиций, содержащих графит, например в графитопластах (с термопластом или реактопластом в качестве связующего). Способ включает предварительную механическую заторцовку круговыми движениями исследуемой поверхности, ее шлифовку мелкозернистой алмазной пастой круговыми движениями на гладкой поверхности, а также полировку, очистку и исследование поверхности образца с помощью оптического микроскопа в светлом поле. Исследуемую поверхность заторцовывают крупнозернистым графитом, нанесенным на лишенную волокон поверхность бывшей в употреблении абразивной шкурки, имеющей бумажную основу. После этого поверхность шлифуют, используя лишенную волокон поверхность бывшей в употреблении абразивной шкурки, имеющей бумажную основу, с нажимом на шкурку, обеспечивающим исчезновение визуально обнаруживаемых рисок на шлифуемой поверхности. Затем полируют шлиф, не касаясь контртела, мелкозернистой алмазной пастой, которую предварительно наносят на поверхность шлифа или на поверхность контртела слоем толщиной, обеспечивающей эффект закручивания пасты между контактирующими поверхностями при круговом движении контртела или шлифа относительно друг друга в контакте со слоем алмазной пасты. При этом круговые движения контртело или шлиф совершают с периодической сменой направления и полировку проводят до выявления структурных составляющих композиции и полного отсутствия рисок. Далее очищают поверхность образца от алмазной пасты круговыми движениями подушечек обезжиренных пальцев рук и исследуют структуру составляющих композиции вначале в светлом поле, а затем при косом освещении. Изобретение позволяет расширить функциональные возможности способа за счет сохранения морфологии составляющих композиции и повышения качества обработки и исследования поверхности шлифа.

Изобретение относится к устройствам для измельчения материалов и может быть использовано для измельчения углеродосодержащих материалов, например терморасширенного графита, сажи и т.д. Измельчитель содержит корпус загрузочного бункера 1, соединенный с корпусом цилиндрической камеры размола 2. Загрузочный бункер 1 выполнен в виде закрытой камеры, в которой вертикально размещен ротор 3 с элементами измельчения 4. Элементы измельчения 4 выполнены в виде спиралеобразных петель с гладкой поверхностью и установлены с возможностью разнонаправленного вращения относительно друг друга. К загрузочному бункеру 1 подведен загрузитель 5, выполненный в виде трубопровода с размещенным внутри поршнем 6. Камера размола 2 размещена соосно под загрузочным бункером 1. В камере размола 2 на вертикальном валу размещен ротор 7, а элементы измельчения 8 выполнены в виде многорядной системы горизонтально закрепленных ножей. В изобретении обеспечивается повышение производительности измельчения материалов, имеющих малую насыпную плотность. 2 з.п. ф-лы, 7 ил.

Изобретение относится к испытательной технике, а именно к устройствам для определения физико-механических свойств образцов. Реверсор содержит попарно соединенные направляющими колонками внешние и внутренние траверсы с отверстиями, силовой шток и две соединительные втулки, установленные в отверстиях траверс и связанные с внешними траверсами. Между внутренними траверсами на направляющих колонках неподвижных траверс дополнительно установлена направляющая траверса с отверстием в центре под силовой шток. На силовом штоке закреплен плоский элемент, выполненный в виде 3-х лучевой звезды. Силовой шток выполнен с возможностью замены и соединен с плоским элементом. Над внутренней неподвижной траверсой и под внутренней подвижной траверсой размещены жестко соединенные с ними Т-образные площадки. В центре Т-образной площадки неподвижной внутренней траверсы закреплен опорный стол для испытуемого образца, на этой же площадке установлен теплоизолированный от траверс нагревательный элемент. В центре Т-образной площадки подвижной внутренней траверсы снизу жестко закреплен шар для самоцентровки силового штока и плоского элемента. На нижней поверхности внутренней неподвижной траверсы под лучами плоского элемента жестко закреплены три Г-образные державки с установленными на них датчиками перемещения. Технический результат: расширение функциональных возможностей реверсора за счет возможности исследований физико-механических свойств образцов из любого материала при температуре выше комнатной. 3 з.п. ф-лы, 5 ил.

Компенсационный электростатический флюксметр предназначен для измерения вертикальной составляющей электрического поля. Устройство содержит экранирующую и измерительную пластины, изоляторы, корпус-основание, двигатель, усилитель тока, маркированный маховик, источник подсветки, фотодиод, мост, пороговый блок, полосовой фильтр, блок приема-передачи данных и блок стабилизации скорости вращения двигателя, сетку, дополнительные изоляторы, синхронный детектор, интегратор, регулируемый источник напряжения и аналого-цифровой преобразователь. При этом экранирующая пластина электрически соединена с корпусом-основанием и расположена в нем на валу двигателя над измерительной пластиной соосно с ней, на валу также укреплен маркированный маховик, вблизи которого расположены источник подсветки и фотодиод, который через последовательно соединенные мостовую схему и пороговый блок подключен к одному из входов синхронного детектора, измерительная пластина и экранирующая пластина соединены со входами усилителя тока, а его выход через полосовой фильтр - с другим входом синхронного детектора. Выход аналого-цифрового преобразователя через блок приема-передачи данных соединен с информационным выходом устройства, вход и выход блока стабилизации скорости вращения двигателя подключены, соответственно, к выходу и входу двигателя, причем лопасти экранирующей пластины несколько повернуты в горизонтальной плоскости, сетка на дополнительных изоляторах укреплена на корпусе-основании в непосредственной близости от экранирующей пластины, выход синхронного детектора через интегратор подключен к управляющему входу регулируемого источника напряжения, а его выход подключен к сетке и ко входу аналого-цифрового преобразователя. Технический результат - повышение точности, надежности и диапазона измерения электрического поля. 2 ил.

Изобретение относится к устройствам для изготовления изделий методом экструдирования
Изобретение относится к области материаловедения и может быть использовано при исследовании структурного состояния графита в сплавах, например сером чугуне, и полимерных композициях, содержащих графит, например в графитопластах, содержащих терморасширенный графит

Изобретение относится к технике прессования

Изобретение относится к технике прессования

 


Наверх