Патенты автора Шторк Сергей Иванович (RU)

Изобретение относится к энергетике. Горелочное устройство включает цилиндрическую камеру сгорания и установленные соосно с ней смесительную трубку с соплом, камеру предварительного смешения топлива и воздуха с лопаточным радиальным завихрителем, камера сгорания снабжена устройством поджига и датчиками давления, связанными с системой автоматического регулирования параметрами процесса горения, посредством ЭВМ. Камера предварительного смешения топлива и воздуха выполнена в виде плоского дискового канала с открытым торцом, образованного между верхним и нижним дисками и связанного через центральное отверстие в верхнем диске со смесительной трубкой и камерой сгорания, а через отверстия в нижнем диске с топливными форсунками, равномерно расположенными по периферии нижнего диска, при этом вдоль открытого торца дискового канала между топливными форсунками на вертикальных осях, установленных между верхним и нижним дисками, расположены управляемые поворотные лопатки завихрителя, причем закрутку потока воздуха, проходящего через открытый торец дискового канала, регулируют поворотом лопаток завихрителя на расчетный угол, в зависимости от показателей датчиков давления в цилиндрической камере сгорания, поступающих на ЭВМ, и посредством управляющей команды с ЭВМ на шаговый двигатель, механически связанный с синхронизирующим кольцом и зубчатыми шестернями, осуществляют поворот лопаток завихрителя. Технический результат - эффективное сжигание топлива и снижение вредных выбросов. 1 з.п. ф-лы, 2 ил.

Изобретение относится к способу определения оптимальных режимов работы гидротурбин. В способе создание рабочих режимов осуществляют с помощью стационарного лопаточного завихрителя 9 и принудительно вращающегося лопаточного завихрителя 11 с наперед заданной скоростью, который вращают на валу внутри трубы. Вращательный момент от внешнего двигателя 13 подают на завихритель 11 посредством магнитной муфты 10 через ременную передачу. Измерения проводят при двух режимах: при фиксированном расходе жидкости и при фиксированной скорости вращения. Для определения оптимального режима работы гидротурбины с максимальным КПД используют скорость вращения и расход относительно режима с нулевой круткой потока. Изобретение направлено на обеспечение способности воспроизводить режимы течений реальных гидротурбин с минимальным возмущением потока, возможность моделировать двухфазные кавитационные явления с широким диапазоном частоты оборотов ротора, обеспечивающим высокую степень закрутки потока, с возможностью проводить измерения параметров потока в любом сечении. 17 ил.

Изобретение относится к комплексу экспериментального моделирования распределения скорости в гидротурбинах. Комплекс имеет модель гидротурбины, состоящую из стационарного лопаточного завихрителя 1, принудительно вращающегося на валу внутри трубы лопаточного завихрителя 3, конического прозрачного рабочего участка 4 измерения скорости, моделирующего коническую часть отсасывающей трубы, двигатель 5, передающий вращательный момент завихрителю 3, электромагнитный расходомер, подающий насос и вакуумный насос, частотный преобразователь для управления двигателем 5, частотный преобразователь для управления подающим насосом. Участок 4 имеет плоские внешние стенки, завихритель 3 соединен с двигателем 5 посредством магнитной муфты 2. Расходомер имеет обратную связь с преобразователем, управляющим работой подающего насоса. Регистрация поля скорости осуществляется двухкомпонентной системой лазерно-доплеровского анемометра. Изобретение направлено на обеспечение возможности моделирования широкого диапазона режимов течения, имеющих место в гидтурбинах при различной нагрузке, комбинацией стационарного и вращающегося завихрителей. 14 ил.

Изобретение относится к гидроэнергетике, а именно к микрогидротурбинам пропеллерного типа. В способе определения оптимального режима работы микрогидротурбины, состоящей из гидравлического тракта, рабочего колеса с носиком обтекания 7, вала 2, статического завихрителя 3, узла управления поворотом лопастей гидротурбины, конического выходного патрубка 6, измеряют профили скорости в одном сечении. Микрогидротурбину помещают на измерительный стенд, с помощью лазерного доплеровского анемометра измеряют поле скорости в патрубке 6 на расстоянии 100 мм от носика обтекателя 7. Рассчитывают параметр крутки потока в этом сечении. При значении параметра крутки более 0,15 регулируют угол лопастей гидротурбины, скорость входящего потока и скорость вращения вала для уменьшения параметра крутки. Рабочее колесо приводят в движение через вал 2, соединенный с сервоприводом 1. Параметр крутки определяют по формуле. Изобретение направлено на создание простого и точного способа определения оптимального режима работы микрогидротурбины при заданных параметрах водного ресурса. 6 ил.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать газожидкостные вихревые течения с любым соотношением жидкости и газа. Способ основан на совместном использовании ЛДА и PIV, включающем пропускание через измерительный объем лазерного излучения, проведение измерений с получением полного периода пульсаций, определение на основе полученной информации временного интервала между сериями изображений, по которым вычисляют мгновенные PIV поля скорости, освещение исследуемого вихревого течения когерентным лазерным светом, фиксирование изображений двумя CCD камерами, принимающими отраженный свет, и запись информации в заданном интервале времени. При этом при диагностике вихревого течения, индуцированного вращающимся прецессирующим ядром (ПВЯ), одновременно формируют сигнала скорости и опорные сигналы с помощью пьезокерамических гидрофонов или с помощью прецизионных конденсаторных микрофонов, расположенных в устройстве для реализации способа, непосредственно внутри исследовательского контейнера после завихрителя вдоль по потоку в виде отдельных сопряженных пар, диаметрально расположенных в горизонтальной и вертикальной плоскостях. Технический результат заключается в расширении технических возможностей и уменьшении ошибок, связанных с резким изменением соотношения жидкости и газа в вихревом потоке. 2 н. и 7 з.п. ф-лы, 6 ил.

Изобретение относится к области теплоэнергетики и может найти применение в любой отрасли промышленности, связанной со сжиганием угольного топлива в вихревых топках. Двухступенчатая вихревая горелка содержит камеру с тангенциальными патрубками подвода окислителя и центральной подачей пропана через газовое запальное устройство, камеру с тангенциальными патрубками подвода угольной пылевоздушной смеси, сопло, на выходе из которого реализуется закрученное течение. Вихревая горелка включает последовательно и соосно установленные три осесимметричные камеры: камеру первой ступени, камеру второй ступени и камеру сгорания, при этом камеры первой и второй ступеней соединены при помощи установленного соосно с камерами профилированного сопла, диаметр которого определяют в зависимости от соотношения мощностей первой и второй ступеней вихревой горелки с учетом параметра крутки, тангенциальные патрубки подачи пылеугольного топлива в камеру второй ступени, установленные противоположно и зеркально относительно друг друга, расположены зеркально тангенциальным патрубкам подачи окислителя в камеру первой ступени. Технический результат - создание двухступенчатой горелки с оптимизированной конструкцией, позволяющей обеспечить более эффективное и безопасное сжигание угольного топлива. 13 ил.

Изобретение относится к прикладной газодинамике, в частности к устройству для стабилизации вихревого потока. Устройство для стабилизации вихревого потока содержит корпус с входным и выходным патрубками для вихревого потока и направляющий элемент, расположенный внутри корпуса. Корпус выполнен в виде полого цилиндра, на торцевых фланцах которого закреплены входной и выходной патрубки. Направляющий элемент выполнен в виде подвижных плоских сегментов, подвижно сопряженных с торцевыми фланцами корпуса, при этом для смещения подвижных плоских сегментов в плоскости, перпендикулярной направлению движения вихревого потока, предусмотрен внутренний механизм. На боковой поверхности корпуса установлены привод внутреннего механизма и дополнительный патрубок для ввода стабилизирующего потока. Внутренний механизм выполнен в виде вращающегося цилиндрического кольца и фиксаторов, которые жестко закреплены на подвижных плоских сегментах и кинематически сопряжены с вращающимся цилиндрическим кольцом и торцевыми фланцами корпуса. Техническим результатом является улучшение технико-эксплуатационных параметров устройства, обеспечение возможности плавного регулирования основных параметров вихревых потоков, включая высокоэнтальпийные и криогенные многофазные вихревые потоки. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в любой энергетической установке по переработке угля в другие виды топлива. Способ сжигания угля, подвергнутого механической и плазменной обработке, включает механическую активацию, воспламенение и сжигание, уголь предварительно дробят и разделяют на мелкодисперсную и крупнодисперсную фракции, из которых мелкодисперсную фракцию угля подвергают механической активации и доводке тонины до размера частиц зерна 40 мкм и менее, затем полученный уголь микропомола вводят тангенциально за счет инжекции в первую газификационную ступень и воспламеняют с помощью стартового плазмотрона, причем ввод осуществляют в направлении, противоположном направлению тангенциального впрыска плазменной струи из стартового плазмотрона, крупнодисперсную фракцию угля, воздушный поток и продукты сгорания угля микропомола из первой газификационной ступени одновременно вводят во вторую газификационную ступень по касательной к ее продольной оси и в одной плоскости, перпендикулярной продольной оси второй газификационной ступени, пылеугольную смесь воспламеняют с помощью продуктов сгорания угля микропомола, используя теплоту сгорания угля микропомола, при этом эффективность процесса газификации и сжигания пылеугольной смеси во второй газификационной ступени обеспечивают за счет импульсного включения дополнительного управляющего плазмотрона, причем впрыск плазменной струи из дополнительного управляющего плазмотрона осуществляют вдоль оси второй газификационной ступени, перпендикулярно плоскости ввода пылеугольной смеси и в направлении, совпадающем с направлением осевого перемещения продуктов сгорания пылеугольной смеси внутри второй газификационной ступени. Изобретение позволяет повысить технико-экономические показатели процесса сжигания угольного топлива за счет предварительной механической и плазменной обработки. 3 з.п. ф-лы, 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов фаз в двухфазных потоках, например, при добыче или переработке углеводородного топлива. Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси включает установку прямоточной вихревой камеры на пути следования потока газожидкостной смеси и попарного расположения внутри нее пьезоэлектрических и дифференциальных датчиков давления. При этом внутри объема вихревой камеры создают условия для прецессирующего вихревого ядра, за счет эффекта прецессии которого и определяют соотношение жидкой и газовой фаз. Технический результат - получение более простого и эффективного способа определения жидкой и газовой фаз в потоке газожидкостной смеси с улучшенными технико-эксплуатационными параметрами, включая точность измерения при всех параметрах и режимах газожидкостной смеси. 4 з.п. ф-лы, 3 ил.
Изобретение относится к теплоэнергетике, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки. Способ включает использование в режиме запуска энергетической установки угля микропомола с размерами частиц не более 10 мкм, получаемого в трехкамерном дезинтеграторе, в стационарном режиме - угля обычного помола, получаемого в двухступенчатой мельнице с помольными шарами и активатором. При этом в форсированном-переходном режиме работы установки предлагается помимо угля микропомола и угля обычного помола использовать дополнительно низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, а контроль и регулировку осуществлять за счет непрерывного мониторинга процесса с помощью компьютера с газоанализатором и специальным программным обеспечением. Изобретение позволяет существенно улучшить экономические и экологические параметры процесса сжигания угольного топлива с максимально возможным оптимальным использованием его теплотворной способности на всех режимах работы энергетической установки и вне зависимости от условий окружающей среды. 4 з.п. ф-лы.

Изобретение относится к теплоэнергетике, а более конкретно, к способу устойчивости и эффективности процесса сжигания топлива в вихревой топке энергетической установки. Способ включает формирование и стабилизацию вихревого потока. Формирование вихревого потока осуществляют за счет симметричного и зеркального расположения горелок на противоположных стенках вихревой топки и направленного выхода горячего газа, а стабилизацию осуществляют за счет разделения основного вихревого потока, как минимум, на два сопряженных вихря, которые образуют за счет изменения угла наклона внутренней поверхности нижнего пода и смещения выпускных отверстий верхнего пода вихревой топки, при этом векторы вращательной и поступательной скоростей движения сопряженных вихрей относительно продольной оси вихревой топки выполняют по траектории двойной спирали в одном направлении, в то время как векторы угловых скоростей вращения сопряженных вихрей вокруг их собственных осей направляют в противоположные стороны друг относительно друга. Изобретение позволяет повысить устойчивость и эффективность сжигания топлива в вихревой топке энергетической установки, исключает использование дорогостоящего и сложного в эксплуатации оборудования. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области теплоэнергетики - способу и устройству для сжигания угля микропомола и угля обычного помола в пылеугольной горелке

 


Наверх