Патенты автора Мартынов Михаил Владимирович (RU)

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа при одновременном повышении точности. Согласно способу интервального определения места повреждения линии электропередачи с использованием ее модели фиксируют отсчеты токов и напряжений, преобразовывают отсчеты в комплексы токов и напряжений, используют имитационную модель линии электропередачи для воспроизведения режимов повреждения линии. При этом проводят имитации повреждений при различных параметрах электропередачи и в различных точках линии электропередачи, вычисляют погрешности между измеренными на объекте и определенными в результате имитации соответствующими токами и напряжениями, задают необходимое значение погрешности, выбирают в качестве оценки расстояния до места повреждения такие значения координаты имитируемого места повреждения, при которых вычисляемые значения погрешности меньше заданного значения. 8 ил., 9 табл.

Использование: в области электроэнергетики и электротехники. Технический результат - расширение функциональных возможностей способа. Согласно способу релейной защиты синхронной электрической машины наблюдают токи статора, ток ротора, фазные напряжения на выводах статора и напряжение нейтрали. Используют фазные алгоритмические модели всех трех фаз неповрежденной электрической машины, определяют безнулевые фазные напряжения как разности между фазными напряжениями и напряжением нейтрали, преобразуют в алгоритмических моделях наблюдаемые токи статора и безнулевые фазные напряжения в сигналы, прогнозирующие реальные величины неповрежденной электрической машины. При этом фазные алгоритмические модели и соответствующие безнулевые фазные напряжения подразделяют на первые и вторые, проводят двухэтапные преобразования наблюдаемых токов и первых безнулевых напряжений в двухкоординатные замеры. На первом этапе преобразуют в первых алгоритмических моделях указанные величины в прогнозируемый угол поворота ротора, на втором этапе вновь преобразуют наблюдаемые токи, но на этот раз во вторых алгоритмических моделях и совместно с прогнозируемым углом, в прогнозируемые вторые напряжения. Сравнивают каждое из прогнозируемых напряжений с соответствующим наблюдаемым напряжением, формируют из каждой пары сравниваемых напряжений двухкоординатный замер, отображают его на плоскости, где задают область отображений режимов неповрежденной синхронной машины, и производят срабатывание защиты, если все двухкоординатные замеры отобразятся вне соответствующей области. 2 з.п. ф-лы, 8 ил.

Использование: в области электроэнергетики. Технический результат - упрощение способа и повышение чувствительности защиты. Полукомплекты микропроцессорной защиты синхронно фиксируют токи и напряжения на обеих сторонах линии, а оптоволоконный канал связи передает информацию от одного комплекта к другому. Наблюдаемые отсчеты токов и напряжений преобразуют в комплексы и далее в замеры, которые воспринимаются распознающими модулями двух типов - блокирующего и разрешающего. Модули располагают комплексными плоскостями для отображения замеров как в ходе обучения, так и последующего функционирования релейной защиты на реальном объекте. Формирование замеров выполняется с участием передающей модели неповрежденной линии, такая модель представляет собой многополюсник в режиме обратной передачи. Входные величины передающей модели - токи и напряжения начала линии, выходные - модельные токи и напряжения, оценивающие соответствующие величины на втором конце предположительно неповрежденной линии. Реализован принцип многомерности релейной защиты. Основной замер токовый, дополнительный - напряженческий. Имитационная модель сети обучает блокирующие модули сигналами тех режимов, в которых линия не повреждена, а разрешающие модули, наоборот, режимов короткого замыкания в линии. Результатом обучения становятся области блокирования и срабатывания. 1 з.п. ф-лы, 7 ил.

Использование: в области электротехники. Технический результат – расширение функциональных возможностей и повышение чувствительности защиты. Согласно способу предполагается двухстороннее наблюдение электропередачи с обменом информации между двумя полукомплектами релейной защиты, установленными на разных сторонах. Используют передающие модели участков линии от мест наблюдения до ответвлений и участка линии между ответвлениями, преобразуют выходные сигналы передающих моделей в комплексные замеры, отображают замеры на комплексных плоскостях распознающих модулей. Обучают распознающие модули от имитационных моделей линии электропередачи. Для передающих моделей вводят эквивалентные ответвления числом не более двух, замеры формируют в виде комплексных параметров отдельно для основной защиты и для защиты дальнего резервирования. Для основной защиты формируют по два комплексных параметра ответвлений в каждой фазе, каждый замер подают на предназначенные для него блокирующий и разрешающий распознающие модули, обучают блокирующие модули обеих защит от первой имитационной модели, воспроизводящей режимы неповрежденной линии. Дополнительно обучают блокирующие модули основной защиты, а также обучают разрешающие модули защиты дальнего резервирования, от второй имитационной модели, воспроизводящей нуждающиеся в резервировании режимы короткого замыкания в ответвлениях. Обучают разрешающие модули основной защиты от третьей имитационной модели, воспроизводящей короткие замыкания в магистральной линии, задают области срабатывания распознающих модулей как отображения множества обучающих режимов соответствующих имитационных моделей. Блокируют основную защиту, если все замеры ее блокирующих модулей отображаются в их областях срабатывания, в противном случае разрешают срабатывание основной защиты, если хотя бы один замер отобразится в области срабатывания соответствующего разрешающего модуля. Блокируют защиту дальнего резервирования, если все замеры ее блокирующих модулей отображаются в их областях срабатывания, в противном случае разрешают срабатывание защиты дальнего резервирования, если хотя бы один замер отобразится в области срабатывания соответствующего разрешающего модуля. 3 з.п. ф-лы, 22 ил.

Изобретение относится к релейной защите высоковольтных линий электропередачи, которые работают в режиме с глухозаземленной нейтралью, в частности к распознаванию поврежденных фаз. Техническим результатом является упрощение и повышение распознающей способности способа фазовой селекции. Способ распознавания поврежденных фаз линий электропередачи при неполнофазном замыкании на землю включает этапы наблюдения токов и напряжений в начале линии, преобразования их в комплексные замеры, отображения каждого замера на комплексной плоскости соответствующего распознающего модуля, обучения распознающих модулей с использованием имитационных моделей линии электропередачи, воспроизводящих различные типы коротких замыканий. Для достижения технического результата формируют фазные и междуфазные замеры. Каждый фазный замер подают на такое число распознающих модулей, которое равно числу различных типов коротких замыканий, по одному модулю на каждый тип. Каждый междуфазный замер подают на такое число распознающих модулей, которое равно числу различных типов двухфазных замыканий. Каждый модуль обучают распознавать один из типов замыканий. Модули, относящиеся к одному и тому же типу замыкания, объединяют по схеме И в общий модуль, распознающий замыкание этого типа. Из всех общих модулей составляют для каждой фазы линии электропередачи две группы - блокирующую и разрешающую. В блокирующую группу собирают общие модули тех типов замыканий, в которых данная фаза не повреждена, а в разрешающую группу - общие модули остальных типов замыканий, в которых данная фаза повреждена. Далее констатируют замыкание в данной фазе при условии, что не сработал ни один из общих модулей блокирующей группы и сработал хотя бы один из общих модулей разрешающей группы. Дополнительно используют передающую модель неповрежденной линии электропередачи, преобразующую наблюдаемые в начале линии токи и напряжения в напряжения в конце линии, и определяют замеры как отношения одноименных напряжений на выходе и на входе передающей модели. 1 з.п. ф-лы, 16 ил.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и повышение достоверности способа локации повреждений. Способ заключается в фиксации отсчетов токов и напряжений, наблюдаемых в линии в текущем и в предшествующем режимах, преобразовании отсчетов в комплексы токов и напряжений текущего и предшествующего режимов, использовании передающей модели, преобразующей комплексы наблюдаемых токов и напряжений предшествующего и текущего режимов в комплексы напряжений и токов соответствующих режимов в месте предполагаемого повреждения, преобразовании комплексов напряжения и тока предшествующего и текущего режимов этого места в комплекс основного замера и определении с его использованием координаты места повреждения линии электропередачи. Согласно способу комплексы электрических величин в месте предполагаемого повреждения преобразуют еще и в комплекс дополнительного замера, используют имитационную модель линии электропередачи для обучения передающей модели интервальному определению места повреждения, для чего воспроизводят в имитационной модели режимы повреждения линии и определяют в этих режимах области отображения комплексов основного и дополнительного замеров на соответствующих плоскостях. При наблюдении линии электропередачи определяют для разных мест предполагаемого повреждения отображения комплексов основного и дополнительного замеров на соответствующих плоскостях, фиксируют те места линии, для которых отображения как основного замера, так и дополнительного попадают в соответствующие области, и объединяют указанные места в интервал повреждения линии электропередачи. 1 з.п. ф-лы, 17 ил.

Использование: в области электроэнергетики. Технический результат - повышение чувствительности и расширение функциональных возможностей способа дальнего резервирования. Согласно способу фиксируют токи и напряжения в начале линии, используют передающую модель линии со входом в месте наблюдения и выходами в ответвлениях, формируют двумерные сигналы, по одному для каждого ответвления, и задают на плоскости каждого двумерного сигнала области срабатывания защиты. Передающую модель выполняют с дополнительным выходом в конце линии и с основными выходами на шинах нагрузок ответвлений, двумерные сигналы формируют в виде комплексных замеров, определяют дополнительный замер для конца линии, а основные замеры - для нагрузок ответвлений, на плоскостях всех замеров задают области блокирования защиты. Блокируют защиту, если все замеры отображаются в соответствующих областях блокирования, в противном случае разрешают срабатывание защиты, если по меньшей мере один основной замер отображается в своей области срабатывания. 3 з.п. ф-лы, 9 ил.

Использование – в области электротехники. Технический результат – расширение функциональных возможностей обучаемой релейной защиты. Согласно способу релейной защиты энергообъекта в составе электрической сети путем преобразования информации об энергообъекте в двумерные сигналы, отображаемые каждый на соответствующей плоскости, обучения релейной защиты от первой имитационной модели сети, воспроизводящей контролируемые режимы энергообъекта, и от второй имитационной модели, воспроизводящей режимы сети, альтернативные контролируемым режимам энергообъекта, раздельного отображения множества контролируемых режимов и соответственно, множества альтернативных режимов, в виде первых и, соответственно, вторых областей на плоскостях двумерных сигналов, фиксации токов и напряжений в местах наблюдения энергообъекта в текущем режиме повреждения и в предшествующем режиме, наблюдаемые токи и напряжения текущего и, соответственно, предшествующего режимов преобразуют в первые и, соответственно, вторые напряжения, для чего обрабатывают наблюдаемые величины в передающей модели неповрежденного энергообъекта, из каждой пары первых и соответствующих вторых напряжений формируют двумерный сигнал и разрешают срабатывание защиты, если при наблюдении энергообъекта каждый двумерный сигнал отображается в соответствующей первой области, но при этом не каждый двумерный сигнал отображается в соответствующей второй области. 4 з.п. ф-лы, 10 ил.

Использование: в области электроэнергетики. Технический результат - повышение распознающей способности защиты по отношению к короткому замыканию в защищаемой зоне. Согласно способу входные комплексные величины преобразуют и вторые группы токов и напряжений, которые далее в модели неповрежденной части линии преобразуют в третьи напряжения и третьи токи, из первых напряжений и вторых токов формируют первую трехфазную комплексную мощность, из третьих напряжений и токов - вторую подобную мощность, формируют универсальный замер защиты как отношение второй трехфазной мощности к первой и задают на плоскости данного замера характеристику срабатывания защиты и вызывают срабатывание исполнительного блока, если указанный комплексный замер находится в области, ограниченной заданной характеристикой срабатывания. При этом первые величины относятся к текущему режиму электропередачи. Вторые величины - это аварийные составляющие токов и напряжений. Третьи напряжения - это результат преобразования первых величин, а третьи токи – результат преобразования вторых величин. 12 ил., 1 табл.

Изобретение относится к области электроэнергетики и направлено на построение универсальной защиты трансформатора, использующей имеющуюся информацию в максимально полном объекте. Поставленная задача решается путем использования моделей обмоток трансформатора, а также моделей его магнитопровода. Задействуется информация о наблюдаемых токах и напряжениях всех обмоток, а также априорная информация о параметрах обмоток и магнитопровода. Аварийное состояние трансформатора распознается по критерию адекватности моделей реальному объекту. Способ защиты включает наблюдение отсчетов токов и напряжений, их интерполяционное преобразование в непрерывные входные величины, используемые в моделях, формирование двумерных выходных сигналов, на плоскостях отображения которых задают области срабатывания релейной защиты. Новыми являются операции преобразования входных величин вплоть до формирования выходных сигналов. Первые обмотки - те, модели которых должны быть задействованы в начале преобразований. Входные токи и напряжения этих моделей преобразуются в производную потоков стержней, на которых располагаются первые обмотки. Модели других обмоток используются иначе. Для них входными величинами становятся производные магнитных потоков и собственные токи, а выходными - напряжения на зажимах. Формируют разностные напряжения, указывающие несоответствие между напряжениями, полученными в результате наблюдения объекта и путем его моделирования. Аналогично используют модели независимых контуров магнитопровода, в которых определяются падения магнитных напряжений. Один путь их определения - через потоки стержней. О неадекватности модели и объекта судят как по электрическим, так и магнитным разностным напряжениям. Двумерные электрические и магнитные сигналы образуются из разностных и базовых напряжений. Характеристики срабатывания защиты задают на плоскостях отображения двумерных сигналов. 10 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа. Согласно способу выделяют две подсистемы, соприкасающиеся в месте замыкания. Для первой подсистемы составляют преобразовательную модель, а для второй - имитационную. Входы преобразовательной модели соответствуют входам первой подсистемы, а выход - месту предполагаемого замыкания. Входы имитационной модели подразделены на основные, соответствующие входам второй подсистемы, и дополнительный, соответствующий месту предполагаемого замыкания. Роль преобразовательной модели заключается в формировании напряжений места предполагаемого замыкания из непрерывных напряжений и токов, полученных для входов первой подмодели. Имитационную модель активируют, воздействуя на ее основные входы непрерывными напряжениями входов второй подмодели. На дополнительный вход воздействуют выходными сигналами преобразовательной модели. Реакцию имитационной модели определяют только на основных входах. Это токи, созданные воздействиями на все входы модели. На заключительном этапе определяют разности между непрерывными токами на основных входах, полученными из наблюдаемых токов, и реакцией модели. Уровень разностных токов несет информацию о том, правильно ли сделано предположение о месте повреждения. Нулевой уровень свидетельствует о совпадении реального места с предполагаемым. 1 табл., 7 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа путем обеспечения защиты любых энергообъектов с моделями любого типа и с произвольным объемом наблюдения объекта. Согласно способу входы объекта соответствуют входам модели. Чтобы активировать модель, на ее входы необходимо подать одну из наблюдаемых на соответствующем входе объекта величин. Наблюдению подлежат все входы и выходы, но необязательно полностью. Полному наблюдению подлежит как минимум один вход. Таким образом, наблюдение осуществляется «с избытком». Все входы и выходы разделяются на три группы. В первую группу включаются полностью наблюдаемые входы и выходы. Во вторую - наблюдаемые только по напряжению, в третью - только по току. Модель объекта активируется путем воздействия на первые и вторые входы и выходы модели источниками наблюдаемых напряжений, на третьи - источниками наблюдаемых токов. Определяют реакцию активированной модели на приложенные воздействия, причем в качестве реакции выделяют только токи первых входов и выходов модели. Определяют разностные сигналы как разности между токами, наблюдаемыми на первых входах и выходах объекта и соответствующими реакциями модели. Характеристики срабатывания защиты задают на основе замеров, формируемых с участием разностных сигналов. 9 ил.

Использование: в области электротехники. Технический результат - повышение быстродействия определения синусоидальной составляющей с возможностью контроля достоверности результата. Согласно способу выполняют операцию аналого-цифрового преобразования наблюдаемого тока, предварительно подавляют синусоидальную составляющую с помощью заграждающего фильтра и фиксируют отсчеты его выходного сигнала. При этом производят дополнительную интервальную обработку в том же фильтре специально подобранных опорных сигналов. Дополнительная обработка проводится на тех же текущих интервалах времени, что и основная операция подавления входного сигнала. Форма опорных сигналов задается жестко, но с сохранением зависимости от варьируемых параметров. Значения параметров определяют из условия равенства отсчетов основного и дополнительного выходного сигналов. Опорные сигналы, параметры которых определены, действуют только на собственных интервалах времени. Апериодическую составляющую формируют из интервальных опорных сигналов. 3 з.п. ф-лы, 3 табл., 12 ил.

Использование: в области электротехники. Технический результат - повышение надежности защиты. Предлагаемый способ основан на симбиозе прямой и косвенной адаптации. Согласно способу применяется три типа сигналов и, соответственно, три разнотипных групп аналогичных реле, а также групп исполнительных реле, в которые входят по одному представителю от каждой группы аналогичных реле. Проводят операции обучения реле второго типа, реагирующих на величины текущего режима, и реле третьего типа, реагирующих на виртуальные величины, формируемые с участием аварийных составляющих токов. Реле первого типа обучению не подлежат. Их характеристики задаются жестко, путем разбиения на части области отображения замеров, формируемых из величин предшествующего режима. При этом реле первого типа управляют процессом обучения реле второго и третьего типа, входящих в одну с ним исполнительную группу. 5 з.п. ф-лы, 6 ил.

Изобретение относится к электроэнергетике и электротехнике, а именно к релейной защите и автоматике электроэнергетических систем

 


Наверх