Патенты автора Полуян Александр Петрович (RU)

Изобретение относится к способам очистки околоземного космического пространства (ОКП) от крупногабаритных объектов космического мусора (КМ). Способ включает выведение космического аппарата (КА) в область орбит, предназначенных для их очистки от крупногабаритных объектов КМ. Для захвата и торможения крупногабаритных объектов КМ используют крупноячеистые сети из углеродных нанотрубок, на которых в качестве аэродинамического тормоза размещают и закрепляют надувные баллоны из пленки из углеродных нанотрубок. При этом надувные баллоны покрывают пленкой с высокой отражающей способностью. На поверхности сети из углеродных нанотрубок размещают развертывающие надувные элементы в виде полых многослойных гермооболочек. После обнаружения с помощью наземных средств контроля космического пространства (ККП) крупногабаритного объекта КМ, измерения параметров его движения относительно КА с наземных средств ККП по радиолинии на КА передают команды на сближение КА с крупногабаритным объектом КМ и осуществляют сближение КА с крупногабаритным объектом КМ. Осуществляют захват сетью крупногабаритного объекта КМ. По сигналу датчиков, расположенных на КА и/или на крупноячеистой сети, наполняют надувные баллоны газом и разворачивают их в космическом пространстве. Затем обеспечивают переход крупногабаритного объекта КМ на более низкую орбиту с последующим входом в плотные слои атмосферы. Повышается эффективность очистки ОКП от крупногабаритных объектов КМ. 2 н. и 16 з.п. ф-лы.
Изобретение относится к космической технике и может быть использовано для ускорения схода с орбиты космического аппарата (КА), выработавшего свой ресурс. Для торможения КА на орбите разворачивают сеть из углеродных нанотрубок, причем внутрь сети в виде объемной геометрической конструкции помещают надувные баллоны из пленки из углеродных нанотрубок. При этом поверхность надувных баллонов покрывают пленкой с высокой отражающей способностью. Способ ускорения схода с орбиты космического аппарата заключается в том, что осуществляют торможение связки КА и крупноячеистой сети из углеродных нанотрубок с надувными баллонами за счет давления солнечного излучения, действующего на надувные баллоны, а также за счет взаимодействия электропроводящих нитей сети из углеродных нанотрубок с магнитным полем Земли и аэродинамического торможения надувных баллонов в сильно разреженных слоях атмосферы Земли. Повышается надежность функционирования схода с орбиты КА. 13 з.п. ф-лы.
Изобретение относится к космической технике и может быть применено для исследования межзвездной среды и доставки космического аппарата (КА) к ближайшим звездным системам. Изобретение представляет собой способ разгона космического аппарата с световым парусом и отделяемыми модулями с фотодиссоционными квантовыми генераторами. КА выводят на околоземную орбиту, разгоняют до третьей космической скорости по траектории к выбранной звездной системе. После выхода КА из пределов гелиосферы Солнца, КА отделяют от разгонного блока (РБ) и разворачивают световой парус. Далее последовательно отделяют модули с фотодиссоционными квантовыми генераторами в направлении вектора скорости КА до израсходования запаса отделяемых модулей с генераторами на борту РБ. Далее последовательно осуществляют поджиг заряда фотодиссоционных квантовых генераторов. Генерируют электромагнитную энергию лазерного излучения высокой плотности. Облучают поверхность светового паруса КА. В итоге тяга, создаваемая в результате воздействия мощного излучения фотонов на световой парус, придает КА ускорение. Достигается возможность проведения исследования межзвездной среды, ближайших звезд и звездных систем. 14 з.п. ф-лы.

Изобретение относится к измерительной технике и служит для измерения диаграммы направленности (ДН) приемо-передающей фазированной антенной решетки (ФАР) радиолокационной станции (РЛС). Технический результат заключается в обеспечении измерения ДН ФАР в процессе функционирования РЛС без использования дополнительного источника сигнала и вспомогательной антенны. Технический результат достигается тем, что предложен способ измерения ДН приемо-передающей ФАР РЛС, согласно изобретению передающим выходом приемо-передающей ФАР РЛС излучают сигнал в направлении отражателя, расположенного в дальней зоне ФАР, приемным входом ФАР принимают отраженный сигнал, измеряют амплитуду отраженного сигнала, причем предварительно на орбиту вокруг Земли транспортируют КА, корпус которого изготавливают в виде правильной шестигранной прямой призмы, причем на одном из оснований призмы выполняют углубление в форме правильной треугольной пирамиды, в которое жестко закрепляют трехгранный уголковый отражатель (УО) с треугольными или секторными гранями из плоских взаимоперпендикулярных радиоотражающих пластин, по измеренным значениям амплитуды отраженного сигнала определяют диаграмму направленности ФАР РЛС. 13 з.п. ф-лы, 5 ил.

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора геостационарной области для получения детальных изображений объектов космического мусора (КМ), находящихся на геостационарной орбите (ГСО) или периодически сближающихся с ней. Обзор производится с КА, работающего в автономном или управляемом режиме с пункта управления полетом. В автономном режиме КА движется вдоль ГСО ниже или выше ГСО по орбите, параметры которой рассчитывают в зависимости от характеристик аппаратуры, определяющих максимальную дальность получения детальных изображений объекта. В автономном режиме аппаратуру обнаружения объектов наводят на область пространства, расположенную впереди КА вокруг геостационарной орбиты. Эта область ограничена как по высоте, выше и ниже ГСО, так и к северу и югу в перпендикулярном к плоскости экватора направлении. Размеры этой области определяются исходя из анализа имеющихся каталогизированных техногенных космических объектов на геостационарных и геосинхронных орбитах. Обнаружив объекты и определив их текущие координаты и параметры движения, наводят аппаратуру получения детальных изображений на выбранный объект, получают его детальные изображения и заносят полученные данные в блок памяти КА. Повторяют цикл наблюдений. Информацию передают по радиолинии при сеансах связи на пункт управления полетом КА. В режиме управления КА командами с пункта управления полетом аппаратуру обнаружения объектов наводят в заданные небесные координаты, обнаруживают объект и выполняют все операции по определению его координат и параметров движения, которые передают на пункт управления. Пункт управления полетом при необходимости передает команды для совершения маневра КА для сближения с заданным техногенным объектом и получения его детальных изображений. Определяются размеры области космического пространства, подлежащей наблюдению. Определяются координаты и параметры движения обнаруженных объектов, получают их детальные изображения. 3 з.п. ф-лы, 12 ил.
Изобретение относится к космической технике и может быть использовано для ускорения схода с орбиты космического аппарата (КА), выработавшего свой ресурс. Способ ускорения схода с орбиты космического аппарата заключается в том, что осуществляют торможение связки КА и крупноячеистой сети из углеродных нанотрубок с надувными баллонами, наполненных газом, в сильно разреженных слоях атмосферы Земли за счет аэродинамического торможения надувных баллонов, наполненных газом, и взаимодействия электропроводящих нитей крупноячеистой сети из углеродных нанотрубок с магнитным полем Земли. Повышается скорость схода с орбиты КА, завершившего активное функционирование, в плотные слои атмосферы. 15 з.п. ф-лы.
Изобретение относится к обеспечению безопасности полетов в околоземном космическом пространстве. Способ включает выведение в область очистки от объектов космического мусора (КМ) космического аппарата (КА), снабженного контейнерами с крупноячеистой сетью из углеродных нанотрубок, имеющей на своей поверхности надувные баллоны. После обнаружения объекта КМ, измерения параметров его движения и сближения с КА наводят продольную ось контейнера в направлении на объект КМ и выталкивают сеть, разворачивая ее в космосе. Осуществляют захват, охват и/или зацепление сетью объекта КМ и по сигналу соответствующих датчиков производят наддув баллонов. В результате аэродинамического торможения надувных баллонов с сетью и КМ переводят КМ на орбиту входа в плотные слои атмосферы. Технический результат заключается в повышении эффективности очистки околоземного пространства от крупногабаритных объектов КМ, в том числе нестабилизированных. 18 з.п. ф-лы.

Изобретение относится к области квантовой электроники и измерительной техники. Способ доставки на точечную цель излучения лазерного дальномера основан на однозначной связи углов рефракции оптических лучей с соотношением температур воды на поверхности моря и воздуха в приводном слое атмосферы. С целью компенсации погрешности данных целеуказания от телевизионного канала из-за разной рефракции лучей телевизионного и лазерного каналов в атмосфере производят адаптивную корректировку данных целеуказания для лазерного дальномера, для чего рассчитывают спектральный показатель преломления воздуха на центральной рабочей длине волны телевизионного канала. Одновременно рассчитывают спектральный показатель преломления воздуха на центральной рабочей длине волны тепловизионного канала. Также рассчитывают спектральный показатель преломления воздуха на центральной рабочей длине волны лазерного канала, затем измеряют текущие значения температур воздуха в приводном слое атмосферы и воды на поверхности моря, вычисляют разность между измеренными температурами воздуха в приводном слое атмосферы и воды на поверхности моря. Далее измеряют угловую координату цели в вертикальной плоскости с помощью телевизионного канала и угловую координату цели в вертикальной плоскости с помощью тепловизионного канала, затем вычисляют их разность. Далее определяют значение угла нацеливания лазерного луча в вертикальной плоскости. В дальнейшем смещают лазерный луч на вычисленный угол в вертикальной плоскости. В заключение осуществляют посылку лазерного луча на цель. Технический результат - компенсация влияния оптической рефракции при наведении лазерного канала активно-пассивной оптико-электронной системы на точечную цель. 2 ил., 2 табл.
Изобретение относится к космической технике, а более конкретно к очистке околоземного космического пространства (ОКП) (КМ). Способ очистки околоземного космического пространства от мелких частиц космического мусора включает выведение мини-спутника, например, с космической станции с размещенными на ней несколькими мини-спутниками на орбиту движения мелких частиц КМ. Для захвата мелких частиц КМ используют многослойную панель из пленки из углеродных нанотрубок, которую размещают на борту МС в свернутом виде в герметичном контейнере. На орбите движения мелких частиц КМ по команде от бортовой вычислительной системы МС выталкивают многослойную панель из герметичного контейнера, разворачивают в космосе и придают ей заданную форму. Осуществляют сбор или захват мелких частиц КМ. По завершении миссии отделяют от МС многослойную панель и обеспечивают ее вход в плотные слои атмосферы. Достигается повышение эффективности очистки пространства. 24 з.п. ф-лы.

Изобретение относится к области радиолокации и может быть использовано для калибровки радиолокационных станций (РЛС) с активной фазированной антенной решеткой (АФАР) с электронным сканированием в двух плоскостях по величине эффективной поверхности рассеяния (ЭПР). Достигаемый технический результат - повышение точности калибровки РЛС с АФАР по величине ЭПР. Указанный результат достигается за счет того, что в качестве эталона ЭПР на орбиту вокруг Земли транспортируют космический аппарат (КА), корпус которого выполнен в форме куба или прямой призмы. На одной из граней куба или прямой призмы имеется V-образный паз или углубление V-образной формы, в котором V-образно жестко закрепляют уголковый отражатель (УО) с гранями из двух плоских радиоотражающих пластин, развернутых под фиксированным углом α. Угол α между гранями УО задают в определенном диапазоне градусов. В процессе полета с наземного комплекса управления на КА передают координаты РЛС с АФАР, а также предельные значения углов электронного сканирования луча АФАР в угломестной и азимутальной плоскостях. С помощью приемников навигационной системы типа «ГЛОНАСС» и/или GPS и бортового цифрового вычислительного комплекса (БЦВК) определяют текущие координаты центра масс КА, углы текущей пространственной ориентации КА, положение центра масс КА относительно координат калибруемой РЛС с АФАР, а также ориентацию осей связанной системы координат КА относительно линии визирования калибруемой РЛС. Одновременно с помощью БЦВК производят расчет и определяют пространственное положение биссектрисы угла УО относительно линии визирования калибруемой РЛС с АФАР, а затем системой ориентации КА осуществляют совмещение положения биссектрисы угла УО с линией визирования калибруемой РЛС. При помощи системы ориентации КА удерживают совмещение биссектрисы угла УО с линией визирования калибруемой РЛС с АФАР. 6 з.п. ф-лы, 6 ил.
Изобретение относится к способам очистки околоземного космического пространства (ОКП) от крупногабаритных объектов космического мусора (КМ). Способ включает выведение космического аппарата (КА) в область орбит, предназначенных для их очистки от крупногабаритных объектов КМ. В качестве элемента захвата и торможения КМ используют крупноячеистую сеть. До запуска КА с сетью на орбиту вокруг Земли на поверхности сети размещают пленочные электреты и осуществляют их электретирование одноименным положительным или отрицательным зарядом. На поверхности сети также размещают развертывающие надувные элементы в виде полых многослойных гермооболочек. После обнаружения крупногабаритного объекта КМ, измерения параметров его движения относительно КА и сближения КА с КМ наводят продольную ось контейнера в направлении на крупногабаритный объект КМ и выталкивают крупноячеистую сеть. За счет давления остаточного воздуха во внутренней полости развертывающих надувных элементов сеть разворачивают в космосе и придают ей заданную форму. Осуществляют захват или охват сетью крупногабаритного объекта КМ и/или зацепление сети за выступающие элементы крупногабаритного объекта КМ. Техническим результатом изобретения является повышение эффективности очистки ОКП от крупногабаритных объектов КМ. 19 з.п. ф-лы.

Изобретение относится к оборудованию многофункциональных космических аппаратов (МКА), предназначенных для калибровки и юстировки радиолокационных станций (РЛС), а также для дистанционного зондирования Земли (ДЗЗ). МКА содержит корпус с приборным отсеком, двигательную установку, системы ориентации и стабилизации, систему обеспечения теплового режима, солнечные батареи. Корпус МКА выполнен в форме куба или прямой призмы. На одной из граней корпуса имеется V-образный паз или углубление, в котором закреплен уголковый отражатель, выполненный из двух плоских пластин. В МКА введен дополнительный модуль аппаратуры: целевой, передающей, командной радиолинии, навигационной (для систем «ГЛОНАСС» и/или GPS) и др. служебных систем. Технический результат заключается в расширении возможностей МКА путём придания ему функций орбитальной платформы-носителя средств для исследований отражательных характеристик атмосферы и ионосферы Земли, ДЗЗ в оптическом и/или ИК-диапазоне; кроме того, повышена устойчивость уголкового отражателя к тепловым деформациям. 8 з.п. ф-лы, 6 ил.

Изобретение относится к космической технике и может быть использовано при создании космических систем обзора космического пространства для наблюдения и обнаружения опасных астероидов и комет, летящих к Земле со стороны Солнца. Технический результат – расширение функциональных возможностей. Для этого система включает один или более космических аппаратов, расположенных на орбите Земли на постоянном расстоянии от нее, и наземные средства управления, приема информации с космических аппаратов и обработки получаемой информации. Космические аппараты осуществляют постоянный обзор той части космического пространства между Солнцем и Землей, которая из-за засветки Солнцем недоступна для наблюдения с Земли и околоземных орбит. Эта область представляет собой конус с вершиной на Земле, с осью, направленной на Солнце, и углом при вершине, равным углу засветки Солнцем оптической аппаратуры наблюдения, размещенной на Земле и на околоземных орбитах. Наземный информационно-управляющий центр (НИУЦ) формирует и передает на космический аппарат (аппараты) команды управления, программы сканирования космического пространства и времена радиовидимости с наземными средствами приема информации. Космический аппарат (аппараты) ежесуточно на интервалах времени радиовидимости с наземных средств передает на них информацию, получаемую как в реальном времени, так и запомненную при наблюдениях вне интервалов радиовидимости. Наземный Центр обработки информации, входящий в состав НИУЦ, осуществляет обработку полученной информации и вырабатывает окончательную информацию об обнаруженных небесных телах. В случае обнаружения потенциально опасных небесных тел НИУЦ выдает через блок связи с абонентами системы в согласованном формате эту информацию органам государственного управления, МЧС и другим организациям, входящим в состав внешних абонентов предлагаемой космической системы. Данная космическая система может быть использована также для проведения астрономических научных исследований. 2 з.п. ф-лы, 7 ил.

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для наблюдения и обнаружения небесных объектов, прежде всего астероидов и комет, опасных для Земли, летящих к Земле со всех направлений, в том числе и со стороны Солнца, определения времени и района падения небесного тела на Землю и выдачи заблаговременного сообщения органам государственного управления и заинтересованным абонентам для предотвращения угрожающего события или принятия мер по снижению катастрофических последствий от возможного столкновения. Технический результат – расширение функциональных возможностей. Для этого космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения опасных для Земли небесных тел - астероидов и комет - включает в себя наземный информационно-управляющий центр и два космических комплекса. Наземный информационно-управляющий центр системы управляет всеми средствами космической системы, организует обзор космического пространства одновременно двумя космическими комплексами и осуществляет обработку поступающей от них информации. Первый космический комплекс с космическим аппаратом (аппаратами), установленным на геостационарной или близкой к ней геосинхронной орбите, регулярно осматривает всю небесную сферу, кроме околосолнечной области, которую невозможно наблюдать из-за засветки Солнцем аппаратуры наблюдения. Второй космический комплекс с космическим аппаратом (аппаратами), установленным на орбите Земли на расстоянии от 40 млн км до 80 млн км, регулярно осматривает сбоку пространство между Солнцем и Землей, недоступное для наблюдения с Земли. Это пространство представляет собой конус, вершина которого расположена в центре Земли, с осью, направленной на центр Солнца, и углом при вершине, равным углу засветки Солнцем аппаратуры наблюдения космического аппарата первого космического комплекса. Обзор этого конуса ограничивается углом засветки Солнцем аппаратуры наблюдения космического аппарата второго комплекса. Космическая система может быть использована также для исследований космического пространства по различным научным программам. 8 ил.

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для обнаружения астероидов и комет, опасных для Земли. Технический результат - расширение функциональных возможностей. Изобретение включает способ обзора космического пространства между Солнцем и Землей, из-за засветки Солнцем недоступного для наблюдения с Земли или околоземных орбит. Обзор этой части космического пространства производится с одного или двух космических аппаратов, расположенных на орбите Земли на постоянном расстоянии от нее. Обзор космического пространства производится в пределах наблюдаемого с космического аппарата контура конуса с вершиной в центре Земли и осью, направленной на Солнце, ограниченного со стороны Солнца углом засветки Солнцем аппаратуры наблюдения космического аппарата. Полный или частичный обзор данной области космического пространства может осуществляться либо в режиме покадровой съемки с заданной экспозицией, либо в режиме сканирования по полосам с заданной угловой скоростью с использованием матричных фотоприемных приборов с зарядовой связью со считыванием сигналов в режиме с временной задержкой и накоплением. Получаемая информация передается на наземные средства приема информации для ее последующей обработки. 12 з.п.ф-лы, 5 ил.

Изобретение относится к космической технике, в частности к конструкции космических аппаратов (КА) для калибровки РЛС. КА содержит корпус с приборным отсеком, двигательную установку, системы ориентации и стабилизации, солнечные батареи. Корпус КА выполнен в виде прямой призмы, одна из граней которой имеет радиоотражающую поверхность, и дополнен плоской прямоугольной пластиной из радиоотражающего материала, шарнирно связанной с гранью прямой призмы, имеющей радиоотражающую поверхность. Плоская прямоугольная пластина снабжена механизмом раскрытия и узлом фиксации к одной из граней прямой призмы корпуса КА. В КА дополнительно введена аппаратура командной радиолинии (АКРЛ), навигационная аппаратура потребителя (НАП) космических систем «ГЛОНАСС» и/или GPS, бортовая вычислительная система (БВС), микроконтроллер (МК), блок сопряжения системы ориентации и стабилизации и узла фиксации с микроконтроллером. При этом АКРЛ, НАП, БВС, МК, блок сопряжения системы ориентации и стабилизации и узла фиксации с микроконтроллером взаимосвязаны. Технический результат изобретения заключается в повышении эффективности калибровки РЛС, расширении функциональных возможностей КА при калибровке радиолокаторов наземного и морского базирования, работающих на волнах круговой поляризации при параллельном приеме отраженных сигналов, а также в возможности проводить калибровку по величине ЭПР высокопотенциальных РЛС на малых углах места (3-5) градусов и в режиме функционирования с пониженной мощностью излучения. 10 з.п. ф-лы, 6 ил.

Изобретение относится к радиолокационной технике. Особенностью заявленного уголкового отражателя является то, что грани уголкового отражателя, выполненные из радиоотражающих или проводящих пластин, развернуты под углом α в диапазоне от (90-Δ) до (90+Δ) градусов, где Δ определяется из соотношения:0<Δ<18λ/a, λ - длина волны радиолокационной станции; a - размер грани уголкового отражателя, дополнительно введено основание из радиопрозрачного материала, причем на верхней части основания по линии симметрии, проходящей через центр основания, выполнен V-образный паз или углубление V-образной формы. Техническим результатом является расширение диапазона углов основного лепестка индикатрисы рассеяния двугранного уголкового отражателя в горизонтальной плоскости. 10 з.п. ф-лы, 5 ил.

Изобретение предназначено для калибровки радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР). Достигаемый технический результат - расширение функциональных возможностей и повышение точности калибровки РЛС. Предлагаемый способ включает запуск на орбиту вокруг Земли космического аппарата (КА) с эталонными отражательными характеристиками, облучение его сигналами РЛС, прием и измерение амплитуды отраженных сигналов. КА с эталонными отражательными характеристиками содержит корпус в виде прямой призмы, одна из граней которой имеет радиоотражающую поверхность. На боковом ребре прямой призмы дополнительно устанавливают плоскую прямоугольную пластину из радиоотражающего материала, шарнирно связанную с корпусом КА. Прямоугольную пластину разворачивают относительно грани прямой призмы, имеющей радиоотражающую поверхность, на угол α и образуют двугранный уголковый отражатель (УО). Угол α между гранями УО задают в определенном диапазоне градусов. В процессе полета с наземного комплекса управления на КА передают координаты РЛС, подлежащей калибровке по величине эффективной поверхности рассеяния. С помощью приемников навигационной системы типа ГЛОНАСС и/или GPS и бортового цифрового вычислительного комплекса (БЦВК) определяют текущие координаты центра масс КА, углы текущей пространственной ориентации КА, положение центра масс КА относительно координат калибруемой РЛС, а также ориентацию осей связанной системы координат КА относительно линии визирования калибруемой РЛС. Одновременно с помощью БЦВК производят расчет и определяют пространственное положение биссектрисы угла УО относительно линии визирования калибруемой РЛС, а затем системой ориентации КА осуществляют совмещение положения биссектрисы угла УО с линией визирования калибруемой РЛС. Далее при помощи системы ориентации КА удерживают совмещение биссектрисы угла УО с линией визирования калибруемой РЛС до выхода КА из зоны прямой радиовидимости калибруемой РЛС. В результате максимум основного лепестка индикатрисы рассеяния УО совпадает с линией визирования калибруемой радиолокационной станции. 5 з.п. ф-лы, 6 ил.

Изобретение относится к бортовому радиолокационному оборудованию космических аппаратов (КА), предназначенному для калибровки радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР). КА содержит корпус в форме прямоугольной призмы (1) с поперечным сечением (2) в виде вогнуто-выпуклого многоугольника. Две грани (4, 5) призмы одинакового размера с радиоотражающими поверхностями обращены внутрь корпуса КА. Корпус КА снабжен двумя откидными плоскими радиоотражающими пластинами (6, 7), шарнирно связанными с гранями (8, 9). Пластины (6, 7) снабжены механизмами раскрытия и узлами фиксации к призме (1), образуя в рабочем положении двугранный уголковый отражатель. Угол между гранями отражателя заключен в диапазоне от (90-Δ)° до (90+Δ)°, причем Δ определяется из условия: 0<Δ<18λ/а, где λ - длина волны калибруемой РЛС, a - размер грани отражателя. На борту КА имеются навигационная аппаратура потребителя систем «ГЛОНАСС» и/или GPS, микропроцессор, микроконтроллер, блок сопряжения системы ориентации и стабилизации с микроконтроллером. Технический результат изобретения заключается в расширении функциональных возможностей КА при калибровке радиолокаторов, работающих на волнах круговой поляризации при параллельном приеме отраженных сигналов, а также при калибровке по величине ЭПР высокопотенциальных РЛС в режиме функционирования с пониженной мощностью излучения. 8 з.п. ф-лы, 10 ил.

Изобретение относится к области радиолокации и может быть использовано при калибровке радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР)

Изобретение относится к медицине, офтальмологии

 


Наверх