Патенты автора Казьмин Александр Игоревич (RU)

Изобретение относится к области электротехники, в частности к способам определения комплексных диэлектрической и магнитной проницаемостей, а также толщины ферритовых материалов и покрытий, и может быть использовано для контроля их качества. Повышение точности и достоверности определения комплексной диэлектрической проницаемости, компонента тензора комплексной магнитной проницаемости, а также толщины ферритовых материалов и покрытий является техническим результатом изобретения, который достигается за счет того, что способ СВЧ-измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле включает возбуждение в исследуемом покрытии двух поверхностных электромагнитных волн Е-типа и одной поверхностной электромагнитной волны Н-типа, измерение их коэффициентов затухания в нормальной плоскости относительно направления их распространения, создание постоянного магнитного поля поперечного ферромагнитного резонанса и определение комплексных диэлектрической и магнитной проницаемостей покрытия, а также его толщины путем решения системы уравнений, для чего дополнительно возбуждают поверхностные электромагнитные волны Е-типа, последовательно, на K-частотах и поверхностные электромагнитные волны Н-типа, последовательно, на L-частотах и создают в покрытии постоянное магнитное поле, направленное в плоскости покрытия, перпендикулярно направлению распространения поверхностных электромагнитных волн. 1 ил., 1 пр.

Изобретение относится к электротехнике и иможет быть использовано для определения электрофизических параметров, обнаружения и оценки дефектов в многослойных диэлектрических и магнитодиэлектрических покрытиях на поверхности металла при разработке многослойных радиопоглощающих покрытий в авиации, а также в химической, лакокрасочной и других отраслях промышленности. Техническим результатом изобретения является повышение быстродействия и надежности устройства за счет увеличения точности определения электрофизических параметров слоев многослойных покрытий, повышение вероятности обнаружения в них межслойных дефектов, а также точности оценки их геометрических параметров (высот) и положения относительно слоев многослойного диэлектрического покрытия. Указанный технический результат достигается тем, что в известное СВЧ-устройство введены блок коммутации антенн, последовательно соединенных с блоком управления, блоком синхронизации, механизмом перемещения, взаимодействующими с приемными антеннами, а также блоком обработки сигналов. 1 ил.

Изобретение относится к области измерительной техники, в частности к способам определения комплексных диэлектрической и магнитной проницаемостей, с учетом их частотной дисперсии, а также толщины диэлектрических и магнитодиэлектрических покрытий на поверхности металла, и может быть использовано при контроле качества покрытий в процессе разработки и эксплуатации радиопоглощающих материалов и покрытий, а также в химической, лакокрасочной и других отраслях промышленности. Повышение точности определения комплексных диэлектрической и магнитной проницаемостей диэлектрических и магнитодиэлектрических покрытий, при их частотной дисперсии, а также их толщины является техническим результатом изобретения. Указанный технический результат достигается за счет создания СВЧ-электромагнитного поля бегущей поверхностной волны типа Е над поверхностью диэлектрик-металл в одномодовом режиме, а также дополнительного возбуждения поверхностных электромагнитных волн Е-типа последовательно на K-длинах волн, после чего проводят соответствующие измерения и расчеты, которые позволяют находить теоретические значения комплексного коэффициента толщины покрытия b. Значения действительной и мнимой частей комплексной магнитной проницаемости, а также их функциональные дисперсионные зависимости от длины волны для всего исследуемого диапазона λk, …, λK позволяют произвести их оценку на любой интересующей длине волны, при этом погрешности оценки комплексной диэлектрической и магнитной проницаемостей для всего исследуемого диапазона не превышают 7%, а погрешность оценки толщины не превышает 6%. 3 ил.

Изобретение относится к измерительной технике, в частности к определению комплексной диэлектрической проницаемости и толщины многослойных диэлектрических покрытий на поверхности металла, и может быть использовано при контроле качества многослойных диэлектрических покрытий. Технический результат: повышение точности определения комплексной диэлектрической проницаемости и толщины многослойных диэлектрических покрытий. Сущность: возбуждают в исследуемом многослойном покрытии поверхностные электромагнитные волны Е-типа последовательно на 2N - длинах волн, где N - количество слоев покрытия. Измеряют коэффициент затухания каждой поверхностной электромагнитной волны по нормали к поверхности покрытия, в том числе его мнимую часть. По результатам измерения составляют систему из 2N - комплексных дисперсионных уравнений, а комплексные диэлектрические проницаемости и толщины слоев покрытия определяют путем решения этой системы уравнений. 2 ил.

Изобретение относится к измерительной технике, в частности к способам обнаружения и оценки дефектов диэлектрических и магнитодиэлектрических материалов и покрытий и может быть использовано при контроле качества твердых материалов и покрытий на металле в процессе разработки и эксплуатации радиопоглощающих материалов и покрытий, а также в химической, лакокрасочной и других отраслях промышленности. Техническим результатом изобретения является повышение вероятности обнаружения дефектов, а также точности и достоверности оценки значений их высот и положения относительно слоев многослойного диэлектрического покрытия. СВЧ способ обнаружения неоднородностей в диэлектрических покрытиях на металлической подложке заключается в создании электромагнитного поля медленной поверхностной Е-волны в диэлектрическом покрытии в одномодовом режиме, измерении по нормали к поверхности диэлектрик-металл его коэффициента затухания, обнаружении отслоения покрытия по пороговому значению коэффициента затухания эталонного образца покрытия и расчете его величины. Дополнительно возбуждают поверхностные электромагнитные волны Е-типа последовательно на L - длинах волн, L>N, N - количество слоев покрытия, измеряют экспериментальное значение коэффициента затухания каждой поверхностной электромагнитной волны, на основе известного априорно вектора диэлектрических проницаемостей и толщин слоев исследуемого многослойного покрытия и неизвестного вектора пробных значений высот возможных дефектов, составляют L - дисперсионных параметрических уравнений, каждое из которых позволяет найти теоретическое значение коэффициента затухания при задании вектора пробных высот возможных дефектов. На основе экспериментальных значений коэффициентов затухания и теоретических значений, получаемых при решении дисперсионных параметрических уравнений, составляют функционал невязки, производят минимизацию функционала невязки варьированием пробными значениями высот возможных дефектов из заданного диапазона их изменения. Значения пробных высот возможных дефектов, при которых функционал невязки принимает минимальное значение, сравнивают с нулевым значением. По результатам сравнения делают вывод о наличии или отсутствии дефекта между слоями покрытия, за высоту каждого обнаруженного дефекта принимают ее пробное значение, полученное при минимизации функционала невязки. 3 ил.

Изобретение относится к области электротехники, в частности к способу определения диэлектрической проницаемости анизотропных диэлектриков, и может быть использовано при контроле качества твердых диэлектрических материалов и покрытий. Способ измерения диэлектрической проницаемости материалов включает облучение диэлектрического образца электромагнитной волной за счет возбуждения несимметричной волны Н01р в круглом волноводе, в котором располагают диэлектрический образец, выполненный в виде пластины, ортогонально продольной оси круглого волновода, при этом диэлектрический образец размещают на металлической подложке и последовательно возбуждают в нем радиальные поверхностные электромагнитные волны на двух близких длинах волн генератора λ1 и λ2 при условии, что (λ2-λ1)/λ1<<1, измеряют значения коэффициента затухания каждой их двух поверхностных волн над диэлектрическим образцом в точках вдоль всей длины окружности, с центром, совпадающим с точкой возбуждения радиальных поверхностных волн, с шагом в зависимости от количество точек измерения коэффициента затухания, по длине окружности для каждой длины волны, находят максимальное и минимальное значения коэффициентов затухания направления двух главных осей поперечной анизотропии исследуемого материала и проводят определение значений диэлектрической проницаемости поперечных компонент тензора диэлектрической проницаемости εх, εу и его нормальной компоненты εz путем решения системы дисперсионных уравнений. Повышение точности измерений поперечной анизотропии диэлектрических материалов является техническим результатом изобретения. 2 ил.

Использование: для исследования метаматериалов. Сущность изобретения заключается в том, что способ определения электрофизических параметров метаматериалов заключается в размещении пластинки исследуемого материала на металлической подложке, возбуждении вдоль металлической подложки электромагнитной волны с вертикальной поляризацией, падающей на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «металлическая подложка - исследуемый материал», определении принадлежности исследуемой пластинки к метаматериалу по положению преломленного луча электромагнитной волны относительно нормали к границе раздела «исследуемый материал - металлическая подложка» и определении его показателя преломления, электромагнитную волну с вертикальной поляризацией, падающую на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «исследуемый материал - металлическая подложка», возбуждают последовательно на частотах, возрастающих от ƒi до ƒN с дискретным шагом по частоте Δƒ, измеряют коэффициент затухания α(ƒi), α(ƒi+1)…α(ƒN) каждой электромагнитной волны над поверхностью исследуемого материала по линии перпендикулярной к его поверхности по туже сторону нормали к границе раздела «исследуемый материал - металлическая подложка», где находится и падающая электромагнитная волна, сравнивают коэффициенты затухания с нулевым значением, если α(ƒi)>0, то принимают решение о том, что пластинка на частоте ƒi является метаматериалом, используя два значения коэффициентов затухания на двух рядом расположенных частотах α(ƒi) и α(ƒi+1), на которых пластинка является метаматериалом, при условии, что определяют ее значения эффективных диэлектрической проницаемости εэф и магнитной проницаемости μэф решая систему из двух дисперсионных уравнений. Технический результат: обеспечение возможности повышения точности определения границ диапазона частот, где исследуемый материал является метаматериалом, а также повышения точности и достоверности измерения его значений эффективных диэлектрической и магнитной проницаемостей. 3 ил.

Использование: для определения диэлектрической проницаемости и толщины многослойных твердых образцов на поверхности металла. Сущность изобретения заключается в том, что способ заключается в создании СВЧ-электромагнитного поля бегущей поверхностной волны типа Е над поверхностью диэлектрик-металл в одномодовом режиме, измерении по нормали к поверхности диэлектрик-металл коэффициента затухания и определении относительной диэлектрической проницаемости покрытия е и его толщины b, дополнительно возбуждают поверхностные электромагнитные волны Е-типа последовательно на 2N-длинах волн, N - количество слоев покрытия, измеряют коэффициент затухания каждой поверхностной электромагнитной волны, по результатам измерения составляют систему 2N-дисперсионных уравнений, а относительные диэлектрические проницаемости εn, εn+1, …, εN и толщины bn, bn+1, …, bN слоев многослойного покрытия определяют путем решения этой системы. Технический результат: обеспечение возможности повышения точности и достоверности измерения диэлектрической проницаемости и толщины многослойных диэлектрических покрытий при их селективном контроле с получением информации о каждом слое в отдельности. 3 ил., 1 табл.

Изобретение относится к способу определения неоднородностей электрофизических и геометрических параметров диэлектрических и немагнитных покрытий на поверхности металла и может быть использовано при контроле качества твердых покрытий на металле в процессе разработки и эксплуатации неотражающих и поглощающих покрытий, а также в химической, лакокрасочной и других отраслях промышленности. Техническим результатом изобретения является повышение вероятности обнаружения неоднородностей за счет определения порогового значения коэффициента затухания напряженности поля медленной поверхностной E-волны применительно к индивидуальным характеристикам исследуемого покрытия. Указанный технический результат достигается тем, что в известном СВЧ способе обнаружения неоднородностей в диэлектрических покрытиях на металлической подложке, заключающемся в создании электромагнитного поля медленной поверхностной E-волны над диэлектрическим покрытием на электропроводящей подложке и последующей регистрации изменения параметров, характеризующих высокочастотное поле, при расчете коэффициента затухания α напряженности поля медленной поверхностной E-волны в нормальной плоскости относительно ее направления распространения в разнесенных точках и определении границ неоднородностей, предварительно измеряют действительную часть диэлектрической проницаемости ε′ и толщину b эталонного образца покрытия, по которым определяют пороговое значение коэффициента затухания напряженности поля медленной поверхностной Е-волны α0, при этом сравнивают в каждой точке измерений сканируемой поверхности покрытия текущее значение коэффициента затухания напряженности поля поверхностной медленной волны α с пороговым значением коэффициента затухания α0, и если α<α0, то принимают решение о наличии отслоения покрытия d в данной точке. 1 ил.

Изобретение относится к СВЧ-технике и может быть использовано для определения электрофизических параметров и неоднородностей диэлектрических покрытий на поверхности металла. Повышение быстродействия и надежности СВЧ-устройства для измерения электрофизических параметров, увеличение точности измерения и вероятности обнаружения неоднородностей покрытия является техническим результатом изобретения. СВЧ-устройство для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле состоит из последовательно соединенных генератора СВЧ, блока коммутации антенн, имеющего N-выходов, N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, при этом n-выход блока коммутации, где , соединен с входом соответствующей антенны, приемной антенны Е-волн и приемной антенны Н-волн, а также из последовательно соединенных блока управления, блока синхронизации, механизма перемещения, взаимодействующих с приемными антеннами, а также блока обработки сигналов, при этом второй, третий и четвертый выходы блока управления соединены со входом СВЧ-генератора, вторым входом блока коммутации антенн, вторым входом механизма перемещения соответственно, а выходы приемных антенн соединены с первым и вторым входом блока обработки сигналов соответственно, при этом второй выход устройства синхронизации соединен с третьим входом блока обработки сигналов. 1 ил.

Изобретение относится к криогенной технике, а именно к измерителям уровня криогенной жидкости, и может быть использовано в автоматизированных системах управления технологическими процессами в криогенных воздухоразделительных установках. Сущность: устройство определения уровня криогенной жидкости состоит из датчика, блока анализа и регистратора. Датчик выполнен из тонкостенной диэлектрической пластины, установленной вертикально на основании емкости. По высоте рабочей зоны диэлектрической пластины располагаются измерительные блоки, покрытые тонким слоем электроизоляционного материала с высоким коэффициентом теплопередачи, при этом каждый измерительный блок содержит последовательно соединенные чувствительные элементы одинакового сопротивления, выполненные из материала, имеющего высокую терморезисторную чувствительность в области криогенных температур, и располагающиеся на одинаковых расстояниях друг от друга. Количество чувствительных элементов во всех измерительных блоках одинаково. Технический результат: повышение точности определения уровня криогенной жидкости в условиях влияния на измеряемую среду различных возмущающих воздействий (изменение давления в емкости, концентрации криогенной жидкости, температуры). 2 ил.

Изобретение относится к способам определения неоднородностей электрофизических и геометрических параметров диэлектрических и магнитодиэлектрических покрытий на поверхности металла и может быть использовано при контроле состава и свойств твердых покрытий на металле, при разработке неотражающих и поглощающих покрытий. Повышение вероятности обнаружения малоразмерных неоднородностей и увеличение точности оценки их границ является техническим результатом предложенного изобретении, который достигается за счет того, что проводят сканирование поверхности покрытия с заданным шагом и формирование двумерной матрицы значений дисперсии коэффициента нормального затухания поля по всей поверхности сканирования, а также формирование второй электромагнитной Е волны с последующим расчетом абсолютного отклонения дисперсий коэффициента затухания поля, с построением пространственного распределения средних значений дисперсий коэффициента нормального затухания поля поверхностных медленных волн Eλ1, Eλ2 и Нλ3, пространственная картина которых визуально отображает распределение неоднородностей и их границу. 4 ил.

Изобретение относится к способам и устройствам измерения концентрации и электрофизических параметров жидких дисперсионных сред и может быть использовано для контроля и регулирования электрофизических параметров и концентрации ферромагнитных частиц (ФМЧ) в жидкости в процессе производства изделий из ферромагнитных материалов, в химической и других областях промышленности

 


Наверх