Патенты автора Багаев Андрей Алексеевич (RU)

Изобретение может применяться для нагрева жидкости, используемой для технологических нужд машиностроения, строительства или сельского хозяйства. Нагреватель жидкости содержит индукционную катушку, цилиндрическую емкость из диэлектрического материала, металлические ферромагнитные шарики, заполняющие емкость, положение которых зафиксировано в емкости, трубопровод с источником нагреваемого теплоносителя, компенсирующую емкость, соединенную с цилиндрической емкостью из диэлектрического материала. Во внутренней полости цилиндрической емкости коаксиально, с зазором относительно друг друга, и с образованием над ними зоны конденсации, размещены три трубы из диэлектрического материала, образующие между собой кольцевые каналы. Индукционная катушка выполнена из полой медной трубки и размещена в одном из кольцевых каналов, а трубопровод с источником нагреваемого теплоносителя проходит через цилиндрическую емкость по центральной коаксиальной трубе и в зоне конденсации выполнен в виде змеевика. Металлические ферромагнитные шарики размещены в кольцевых каналах, охватывающих кольцевой канал с индукционной катушкой. 1 ил.

Изобретение относится к области электротехники, а именно, к проточному индукционному нагревателю текучих сред и может быть использовано в устройствах электрического нагрева жидкости в различных отраслях промышленности. Улучшение теплообменных характеристик нагревателя, а также повышение химической и биологической защиты является техническим результатом изобретения, который достигается за счет того, что проточный индукционный нагреватель текучих сред содержит гофрированный сердечник, выполненный из тонкостенной нержавеющей стали в виде трубчатого змеевика, и медный индуктор, покрытый слоем диэлектрического материала с нейтральными биологическими и химическими свойствами, который соосно размещен внутри трубки змеевика, при этом концы сердечника из нержавеющей стали соединены друг с другом проводником. 3 ил.

Изобретение относится к электроэнергетике и может быть использовано в устройствах электрического нагрева жидкости для животноводческих помещений, производственных мастерских, предприятий по переработке жидких пищевых продуктов, в сфере обслуживания, быту. Проточный индукционный нагреватель жидкости включает индуктор с обмоткой и установленный внутри нее сердечник в виде трубчатого змеевика из тонкостенной ферромагнитной нержавеющей стали, в котором обмотка выполнена из медной трубки, а сердечник - гофрированным, с толщиной стальной стенки трубки змеевика, равной глубине проникновения в нее электромагнитной волны, и соосно установлен внутри медной трубки, при этом между медной трубкой и стальным сердечником размещен слой диэлектрика. Изобретение обеспечивает повышение коэффициента полезного действия за счет повышения равномерности нагрева теплообменной поверхности змеевика из нержавеющей стали, снижение технологической и конструкционной сложности. 4 ил.

Изобретение относится к области светотехники и может найти применение в системе освещения и облучения, в том числе, растений в теплицах. Техническим результатом является снижение неравномерности облучения. Способ заключается в том, что на плане участка геометрически размещают светильники с определенной формой кривой силы света, используют её значения для предварительного размещения и для вычисления показателей силы света по основной формуле освещенности, строят по ним в прямоугольной системе координат для ряда углов распределение освещенности, по которым находят расстояния между центрами светильников с учетом заданной неравномерности. Технический результат достигается за счет того, что центры светильников определяют путем вписывания проекций конуса силы света в границы участка облучения, задаются высотой подвеса и по образующим конуса силы света источника облучения геометрически находят предельные углы КСС. Вычисляют по основной формуле освещенности показатели силы света из условия достижения определенной величины неравномерности облученности, строят по этим значениям в прямоугольной системе координат кривую силы света, по которой подбирают соответствующие светильники и размещают их в ранее найденные центры на плане участка облучения. 1 з.п. ф-лы, 5 ил.
Изобретение относится к области электротехники, а именно к способу изготовления дисперсных магнитопроводов, которые могут быть использованы в условиях отрицательных температур. Способ включает формирование тела магнитопровода из порошка электротехнической стали с величиной частиц 0,001-0,35 мм, которые помещают в полость формы, имеющей не менее двух перегородок толщиной 0,4 мм. Порошок из частиц перемешивают с электролитом в количестве 1,0-1,8% от объема металлического порошка, после чего форму помещают в среду с температурой ниже температуры замерзания электролита на 5-78°C, после затвердевания электролита части магнитопровода извлекают из формы, устанавливают на него катушки, при этом торцы магнитопроводов смачивают смесью, содержащий электролит и частицы электротехнической стали, соединяют между собой и помещают в среду температур ниже температуры замерзания электролита. Состав электролита при его замерзании обеспечивает формирование монолитной конструкции магнитопровода без снижения его магнитных характеристик, что является техническим результатом изобретения. 1 пр.

Изобретение относится к теплоэнергетике и может найти применение в системах теплонагрева и отопления. Способ заключается в подаче холодной жидкости в корпус электродной нагревательной установки и ее нагреву. Нагрев жидкости ведут путем создания и поддержания горения низкотемпературной плазмы. Горение плазмы производят в замкнутом непроточном объеме жидкости промежуточного теплообменника, а нагрев жидкости ведут за счет омывания стенок теплообменника при пропускании ее через внутреннюю циркуляционную систему. Устройство для преобразования электрической энергии в тепловую, выполненное в виде электродной нагревательной установки, содержащей корпус, снабженный подводящим и отводящим патрубками, электродную систему. Устройство содержит замкнутый теплообменник с жидкостью, размещенный внутри корпуса и образующий своими стенками и стенками корпуса внутреннюю циркуляционную систему. Электродная система размещена в жидкости замкнутого теплообменника и включает отдельный изолированный электрод и стенки корпуса. Внутренняя циркуляционная система выполнена в виде размещенных в корпусе двух замкнутых полостей, соединенных друг с другом посредством диффузора. Изобретение позволяет улучшить технические показатели электродных установок прямого нагрева. 2 н. и 2 з.п. ф-лы, 1 ил.

Способ относится к методам производственного контроля расхода и дозирования сыпучих материалов и может найти применение в отраслях промышленности, перерабатывающих сыпучие материалы. Способ непрерывного контроля расхода и дозирования сыпучих материалов включает подачу материала на лопасти турбинки, закрепленной на роторе электродвигателя, статор которого питается от регулируемого источника питания через коммутатор статорных обмоток, преобразование и отображение величины тока статора на индикаторе. При этом массу подаваемого материала наращивают порционно и фиксируют величину тока в цепи статора. Строят функциональную зависимость «разность рабочего тока и тока холостого хода статора - масса материала в секунду», фиксируя при этом время нахождения каждого массообъема на лопатках турбинки. Затем запускают непрерывную подачу материала. Необходимую дозу определяют как произведение мгновенной массы материала, установленной из полученной зависимости «разности рабочего тока и тока холостого хода статора - масса материала в секунду», на время действия разности рабочего тока и тока холостого хода статора. Технический результат - повышение точности дозирования и контроля расхода сыпучих материалов. 2 ил.

Способ контроля расхода и дозирования сыпучего материала включает пропуск материала из транспортера через входной патрубок на потокочувствительную турбинку типа лопастного метателя с горизонтальной осью вращения, приводимую в движение электродвигателем. После соприкосновения с лопастями турбинки частицы сыпучего продукта получают дополнительное количество движения и, отразившись от стенки кожуха, падают вниз на выводное устройство. Общий крутящий момента на валу турбинки равен ударному взаимодействию потока вещества с лопастью (косой удар) и ускорению Кориолиса при последующем скольжении частиц по лопастям из внутренней области турбинки наружу, пропорциональных массовому расходу материала. Возрастание нагрузки на лопастях вызывает снижение угловой скорости вращения ротора. Порционно наращивая массу подаваемого материала и фиксируя величину угловой скорости ротора, строят функциональную зависимость «разность рабочей угловой скорости ротора и угловой скорости ротора холостого хода - масса материала в секунду», фиксируя при этом время нахождения каждого массообъема на лопатках турбинки, после чего запускают непрерывную подачу материала, а необходимую дозу определяют как произведение мгновенной массы материала, установленной из полученной зависимости «разность рабочей угловой скорости ротора и угловой скорости холостого хода ротора - масса материала в секунду», на время действия рабочей угловой скорости ротора, пропорционально заштрихованной области. Технический результат - повышение точности дозирования и контроля расхода сыпучих материалов. 2 ил.

Изобретение относится к неразрушающим методам контроля волокнистых материалов и может быть использовано при анализе их параметров в процессах заготовки и переработки

 


Наверх