Патенты автора Богданов Владимир Дмитриевич (RU)

Изобретение относится к измерительной технике и может быть применено в вихревых расходомерах для измерения объемного расхода с использованием вихрей Кармана. Сборка чувствительного элемента 11 выполнена внутри тонкостенного металлического стаканчика 19 и состоит из пьезоэлемента 21 в виде плоского диска с отверстием, имеющего электроды на нижней и верхней поверхностях, металлического контакта 22 и изолятора 23 внутри стаканчика 19, кабеля 7 с загибом 24 на конце и прижатым к металлическому контакту 22. Металлический контакт 22 замыкает пару электродов на верхней стороне пьезоэлемента 21. Вторая пара электродов с нижней стороны замыкается между собой металлическим основанием 15 корпуса чувствительного элемента 11. При этом изолятор 23 выполнен из пластичного в исходном состоянии композитного материала в виде плоского керамического диска, сформированного при застывании в сборке композитного материала с помощью стаканчика 19. Стаканчик 19 приварен с заданным усилием снизу к основанию корпуса 15 чувствительного элемента 11. Монолитность конструкции чувствительного элемента 11 обеспечивается сварным швом 20 при приварке стаканчика 19 с заданным усилием 18, изолятором 23 из композитного материала, являющегося пластичным при сборке и становящегося монолитным после затвердевания, обеспечивающим сборку чувствительного элемента 11 без зазоров. Технический результат - увеличение чувствительности преобразователя вихрей при снижении трудоемкости сборки и повышение надежности преобразователя. 4 ил., 2 табл.

Изобретение относится к измерительной технике и может быть применено в вихревых счетчиках расходомерах для измерения объемного расхода с использованием вихрей Кармана. Cпособ измерения объемного расхода в вихревых расходомерах заключается в создании в измерительном канале счетчика регулярной последовательности вихрей, регистрации каждого вихря в виде электрического импульса, измерении текущих значений частоты f следования импульсов, а также температуры и давления вещества, вычислении косвенным способом текущего значения кинематической вязкости вещества ν: для жидкости - по температуре, для газа или пара - по температуре и давлению. Вычисление объемного расхода Q производится в соответствии с выражением Q=f⋅C/Sh, с использованием измеренной частоты вихрей f, постоянного коэффициента С, равного геометрической константе измерительного канала и рассчитанного текущего значения числа Sh Струхаля на основе линеаризованного выражения зависимости числа Sh от обратного значения безразмерного числа Ro, что позволяет расширить диапазон и повысить точность измерения расходов. Коэффициенты а и b для линеаризованной зависимости Sh(1/Ro) определяются методом наименьших квадратов при калибровке вихревого расходомера по заданным реперным точкам расхода. Объем W протекшего вещества определяется как произведение суммы импульсов, зафиксированных за время измерения, на вес импульса, W=ΣN⋅Pи, при этом вес импульса, поступающий на выход счетчика расходомера, может иметь любое заданное фиксированное значение, равное объему вещества. Использование для расчета расхода линеаризованного выражения для числа Sh Струхаля вида Sh=a+b/Ro, как линейной зависимости числа Sh от обратного значения безразмерного числа Ro, коэффициенты а и b которой вычисляются с помощью метода наименьших квадратов, позволяет расширить диапазон измерения для вихревых расходомеров для заданной погрешности измерения. Оно же дает возможность уйти от вычисления текущего значения Sh через аппроксимирующую зависимость числа Sh Струхаля через число Рейнольдса - Sh (Re), вносящую дополнительные погрешности в измерение расхода вследствие определения числа Re через дополнительную аппроксимирующую функцию Re(Ro), обеспечивая тем самым повышение точности измерений. Вычисление расхода, выполняемое с использованием параметров среды (безразмерное число Ro), частоты f вихрей и геометрических констант измерительного канала (число С), позволяет уйти при расчетах от весового коэффициента, неравного в общем случае отношению C/Sh, что дает возможность использовать любой вес поступающего на выход вихревого расходомера импульса, равного объему протекшего вещества, и расширить диапазон измерений. Технический результат - повышение точности измерений при расширении эксплуатационных возможностей вихревого расходомера. 4 ил.

Изобретение относится к измерительной технике и может быть применено в вихревых расходомерах для измерения объемного расхода с использованием вихрей Кармана. Вихревой расходомер содержит проточную часть и тело обтекания, установленное в проточной части поперек диаметра. Тело обтекания генерирует вихри Кармана, создающие пульсации давления в проточной части с частотой, пропорциональной скорости потока. Преобразователь вихрей расположен за телом обтекания по направлению потока или в теле обтекания и воспринимает пульсации давления вихрей. Преобразователь вихрей закреплен в проточной части с помощью прижимного фланца. Сигнал с преобразователя вихрей передается по кабелю. Преобразователь 4 вихрей в сборе содержит цилиндрический корпус 8 с полостью 9 и фланцем 6. В нижней части корпуса 8 имеется основание 10, к поверхности которого с внутренней стороны установлен чувствительный элемент 11, на наружной стороне основания 10 имеется крыло 12, взаимодействующее с потоком. Крыло 12 выполнено в виде плоской пластины за одно с цилиндрическим корпусом 8. Чувствительный элемент 11 прижат к основанию 10 с усилием 13, заданным при сварке цилиндрического корпуса 8 и чувствительного элемента 11. Монолитность конструкции преобразователя 4 вихрей обеспечивается сварным швом 14 при сварке цилиндрического корпуса 8 и корпуса 15 чувствительного элемента 11. Кабель 7 проходит насквозь через отверстие чувствительный элемент 11. Технический результат - упрощение конструкции преобразователя вихрей и технологии его изготовления при обеспечении соответствия требованиям по прочности при воздействии рабочего давления и температуры. 5 ил.

 


Наверх