Патенты автора Горин Андрей Владимирович (RU)

Изобретение относится к области машиностроения, в частности к способам управления радиально-осевыми движениями ротора с использованием гидродинамических подшипниковых узлов скольжения, воспринимающих основную нагрузку. Способ включает операцию, при которой, осуществляют регулирование положения ротора за счет приложения усилия на торец втулки управляемого подшипникового узла после поступления сигналов о величине температуры, давления, осевого и радиального перемещения в режиме реального времени, переданных от измерительного блока на блок сбора, обработки и управления сигналами, оснащенный программным обеспечением, основанным на предварительно обученной нейронной сети. Регулирование положения ротора приводит к уменьшению зазора между внутренней втулкой и ротором и смещению вращающегося ротора в сторону второго подшипникового узла. Подшипниковые узлы скольжения выполнены коническими, один из них является управляемым. Достигается повышение надежности. 1 ил.

Изобретение относится к области машиностроения, в частности, к устройствам контроля износа подшипников скольжения. Устройство содержит втулку и источник тока, индикатор износа. Втулка выполнена из антифрикционного материала, в которой закреплен индикатор износа. Индикатор износа выполнен в виде незамкнутого кольца, изолированная часть которого заглублена во втулке на величину, равную начальному износу. Источник тока подключен к индикатору износа. Индикатор износа подключен к блоку отображения и обработки информации. Индикатор износа состоит из металлической части, заключенной в изоляцию. Индикатор износа соединен одним проводом с плюсовыми полюсами источника тока и усилителя сигнала, а другим проводом - с минусовыми полюсами источника тока и усилителя сигнала. Усилителя сигнала через третий провод соединен с блоком отображения и обработки информации. Достигается повышение точности и быстродействия работы системы контроля износа. 1 ил.

Изобретение относится к области машиностроения, в частности к способам изготовления подшипников скольжения. Способ изготовления подшипника скольжения с возможностью диагностики предельного изнашивания рабочей поверхности включает механическое нанесение микрорельефа на рабочую поверхность подшипника, выполненную из антифрикционного материала. Наносят на рабочую поверхность подшипника скольжения канавки и углубления механическим способом. Обрабатывают подшипник сжатым воздухом. Обезжиривают рабочую поверхность подшипника. Устанавливают в канавки индикаторы износа, а в углубления - датчики температуры. Соединяют индикаторы износа и датчики температуры с измерительной системой. Наносят на рабочую поверхность подшипника последовательно слои твердого антифрикционного покрытия. Подбирают соответствующие режимы полимеризации каждого слоя с временными интервалами при межслойном нанесении при +20°С не менее 15 мин. При окончательном нанесении при +20°С не менее 120 мин, затем осуществляют притирку рабочей поверхности. Достигается возможность прогнозирования остаточного ресурса подшипника. 4 ил.

Изобретение относится к испытательной и диагностической технике и может быть использовано для ускоренных испытаний коробок переключения передач (КПП) легковых автомобилей с поперечным расположением двигателя на долговечность с имитацией эксплуатационных нагрузок, а также для диагностирования их технического состояния. Устройство содержит раму, установленные на ней электродвигатель, вал которого через гибкую муфту соединен с ведущим валом, предназначенным для подключения механической коробки передач, блок управления электродвигателем, механизмы нагружения и блок преобразования сигналов с подключенным к нему вибродатчиком. На раме установлены блок управления гидравлическим приводом, соединенный с механизмом нагружения, механизм переключения передач, ведущий вал снабжен промежуточными опорами для фиксации механизма сцепления коробки передач, механизмы нагружения выполнены с возможностью подключения к приводным валам коробки передач, а блок преобразования сигналов подключен к компьютеру. Технический результат заключается в возможности диагностирования КПП транспортных машин в приближенных к реальным условиям эксплуатации, в частности, к определению зазоров в сопряжениях элементов коробок передач транспортных машин. 2 ил.

Использование: для диагностирования технического состояния подшипниковых узлов качения или скольжения в режиме реального времени. Сущность изобретения заключается в том, что система вибродиагностики подшипникового узла содержит датчики вибродиагностики и акустической диагностики, подключенные через соответствующие им последовательно соединенные устройства усиления, фильтрации и преобразования сигнала к блоку обработки, обучения и принятия решения, который соединен с базой данных и блоком прогноза состояния и отображения информации, а также с блоком калибровки, подключенным к датчикам вибродиагностики и акустической диагностики через соответствующие им последовательно соединенные устройства преобразования, фильтрации и усиления сигнала. Технический результат: повышение надежности работы, точности и быстродействия системы виброакустической диагностики для выявления различных видов дефектов подшипниковых узлов в режиме реального времени. 1 ил.

Изобретение относится к области машиностроения, в частности к подшипникам скольжения, и может быть использовано в узлах механизмов, машин, роторных машинах, к которым предъявляются повышенные требования по надежности опорного узла. Мехатронный подшипник скольжения содержит корпус и размещенную в нем втулку, выполненную из антифрикционного материала, во втулке закреплен индикатор износа, выполненный в виде незамкнутого кольца, изолированная часть которого заглублена во втулке на величину, равную начальному износу. Индикатор износа состоит из трех пластин, заключенных в изоляцию и имеющих по два электрических контакта каждая, причем первая группа контактов через соответствующий ей разъем соединена с одним полюсом источника электрического питания, а вторая группа контактов через последовательно установленные соответствующий ей разъем, преобразователь сигнала и дисплей подключена к другому полюсу источника электрического питания. Технический результат заключается в информативности состояния подшипника скольжения в течение всего срока его эксплуатации, что приводит к увеличению ресурса работы узла или агрегата, в состав которого он входит. 1 ил.

Изобретение относится к области машиностроения и лабораторного оборудования и может быть использовано для исследования и имитации поведения роторно-опорных узлов энергоблока. Устройство состоит из электродвигателя, преобразователя и опорных подшипниковых узлов, закрепленных на основании и представляющих собой гидродинамические подшипники скольжения и/или подшипники качения, в которые установлен вал с нагрузочным диском. Дополнительно оно содержит валопровод, состоящий из трех отдельных валов, каждый из которых размещен между соответствующей парой опорных узлов, электродвигатель установлен на основании, размещенном на каркасе, подключен к частотному преобразователю и соединен с первым валом, снабженным нагрузочными дисками и размещенным на том же основании, что и электродвигатель, вторым валом, снабженным нагрузочными дисками, и третьим валом, установленным на другом основании. По длине валов на обоих основаниях расположены стойки с датчиками перемещений и частоты вращения, на опорных подшипниковых узлах размещены датчики температуры и вибрации. Причем частотный преобразователь и все датчики подключены к блоку управления, сбора и моделирования и обработки сигналов, соединенному с блоком хранения и отображения информации. Технический результат заключается в расширении области исследования роторных систем за счет моделирования различных процессов, таких как смещение и проседание фундамента путем изменения соосности и перекоса валов, а также моделирования различных ситуаций, связанных с износом узлов подшипников скольжения и отсутствием смазочного материала. 2 ил.

Изобретение относится к области машиностроения и ремонта машин, может быть использовано как при изготовлении новых деталей, так и при восстановлении изношенных деталей, в частности подшипников скольжения. Способ изготовления втулки подшипника скольжения включает механическое нанесение рельефа на внутреннюю цилиндрическую поверхность стальной втулки, нанесение газопламенным напылением антифрикционного покрытия, а затем пластическое деформирование антифрикционного покрытия накатыванием твердосплавным инструментом. Накатывают антифрикционное покрытие до достижения требуемой толщины, причем последний слой механически обрабатывают и наносят пленочное антифрикционное покрытие, обеспечивающее образование микрованночек для удержания смазочного материала. Увеличивается ресурс работы подшипника скольжения в период пуска, останова и реверса. 1 ил.

Изобретение относится к области машиностроения и ремонта машин, может быть использовано как при изготовлении новых деталей, так и при восстановлении изношенных деталей, в частности подшипников скольжения. Способ изготовления втулки подшипника скольжения включает изготовление втулки с наружным диаметром, равным посадочному диаметру узла, в который устанавливают втулку, и механическое нанесение микрорельефа на внутреннюю поверхность втулки. На внутреннюю поверхность втулки, выполненную из антифрикционного материала, с нанесенным микрорельефом наносят пленочное антифрикционное покрытие, обеспечивающее в сочетании с микрорельефом образование микрованночек для удержания смазочного материала. Увеличивается ресурс работы подшипника скольжения в период пуска, останова и реверса. 1 ил.

Изобретение относится к области машиностроения, в частности к роликовым подшипникам качения, и может быть использовано в узлах механизмов и машин для обеспечения вращательного движения. Мехатронный подшипник качения содержит внутренние и наружные кольца, расположенные между ними тела качения, разделенные сепаратором. Подшипник также содержит устройство перемещения внутреннего кольца, включающее планетарную передачу и электродвигатель, подключенный к блоку управления сбора и обработки сигналов, который соединен прямой и обратной связью с датчиками температуры, вибрации, перемещения и усилия, встроенными в наружное кольцо. Технический результат заключается в поддержании рационального зазора между телами и дорожками качения подшипника на всех режимах работы, что приводит к увеличению ресурса работы устройства. 1 ил.

Изобретение относится к парашютной технике, а именно к конструкции тренажеров для парашютистов. Тренажер парашютиста состоит из управляющего компьютера, подвесной системы, левой и правой строп управления, шлема со встроенными очками виртуальной реальности и наушниками, системы датчиков и кабелей. Причем верхняя рама имеет возможность перемещения относительно основания за счет гидроцилиндра, в верхней части подвижной рамы установлена вращающаяся платформа, к которой прикреплены свободные концы подвесной системы. При этом вращение платформы осуществляется шаговым двигателем при помощи зубчатой передачи. Кроме того, в нижней части основания установлен имитатор приземления, состоящий из нижней плиты, верхней крышки со встроенным сердечником, соленоида. При этом перемещение крышки производится за счет действия соленоида. Повышается качество начальной подготовки парашютистов. 2 ил.

Изобретение относится к области машиностроения и ремонта машин и может быть использовано как при изготовлении новых деталей, так и при восстановлении изношенных деталей, в частности подшипников скольжения. В способе изготавливают втулку, на внутренней цилиндрической поверхности которой нарезана «рваная» резьба, нанесено антифрикционное покрытие с последующей механической обработкой пластическим деформированием накатыванием антифрикционного покрытия твердосплавным инструментом. На предварительно подготовленную механическим способом внутреннюю поверхность стальной втулки наносят подслой порошкового материала, связывающий антифрикционный слой со стальной втулкой, при этом антифрикционные слои наносят в несколько проходов, после каждого из которых их подвергают пластическому деформированию, последний слой подвергают механической обработке лезвийным инструментом. Технический результат: увеличение прочности сцепления антифрикционного покрытия со стальной основой, увеличение микротвердости антифрикционного покрытия и его равномерного распределения по высоте, снижение пористости антифрикционного покрытия и достижение заданных параметров точности обработки антифрикционной поверхности. 1 ил.

Изобретение относится к области учебного лабораторного оборудования и может быть использовано в учебном процессе при проведении лабораторных работ и практических занятий по общеинженерным дисциплинам в высших и средних специальных учебных заведениях. Мехатронная установка для исследования роторных систем содержит корпус, установленный на станине, имеющий резьбовые отверстия для крепления соединительных элементов, связанных гидравлическими шлангами со смазочной системой, в корпусе с двух сторон установлены и закреплены подшипниковые узлы, имеющие подшипники скольжения, дистанционную втулку, гайку, вал, связанный через муфту с электродвигателем, нагрузочное устройство с датчиком силы, датчик давления, датчик перемещения, установленный на корпусе датчик перемещения, бак с погружным насосом, регулируемый предохранительный клапан, коллектор для подвода смазочного материала, расходомер, манометр, шаровые краны. Корпус установлен вертикально и прикреплен к каркасу, закрепленному на станине, корпус через подшипниковый узел связан с дополнительным модулем, установленным на станине, содержащим упорный подшипник скольжения, резьбовые отверстия, выполнены в корпусе для крепления датчиков температуры и перемещения, штуцер, сервоклапан связанный гидравлическими шлангами со смазочной системой, в которой установлены фильтры грубой и тонкой очистки, датчик давления расположен в штуцере между модулем и сервоклапаном, блок сбора и обработки сигналов, входы которого связаны с датчиком частоты вращения, датчиками температуры, датчиком перемещения, датчиком давления, датчиком силы, а выходы - с сервоклапаном, электродвигателем, насосом и нагрузочным устройством, снабженным датчиком силы, закрепленным на каркасе, и воздействующим на вал через диск, закрепленный на валу. Технический результат - расширение области исследования роторных систем, за счет изменения положения корпуса установки, с возможностью применения дополнительного модуля с активным управлением характеристиками подачи смазочного материала и возможностью изменения схемы подачи смазочного материала в подшипниковый узел. 5 ил.

Изобретение относится к строительству и может быть использовано при прокладке труб, кабелей высокого напряжения и телефонных, а также водоспусковых и дренажных коммуникаций. Устройство ударного действия для образования скважин в грунте включает корпус, гидромолот с наковальней, полый наконечник в виде цилиндрического корпуса с усеченным конусом, передний торец которого снабжен кольцевым ножом, и размещенные внутри полого наконечника под углом друг к другу четыре радиально рассекающих ножа. В задней части наконечника установлен вращающийся активатор, состоящий из высокомоментного гидродвигателя и цилиндра, на внутренней поверхности которого расположен шнек с переменным шагом спирали. На передней части шнека расположены форсунки. Коммуникации подвода эмульсии расположены внутри шнековой спирали. Обеспечивается повышение производительности прокладки и снижение энергозатрат на проведение скважин в грунте. 3 ил.

Изобретение относится к строительству и может быть использовано при прокладке труб, кабелей высокого напряжения и телефонных, а также водоспусковых и дренажных коммуникаций

 


Наверх