Патенты автора Рахманов Виталий Владиславович (RU)

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения геометрических параметров цилиндрических объектов, в частности урановых топливных таблеток, композитной арматуры, кабельной продукции, проволоки в процессе производства. Технический результат - создание оптико-электронного способа измерения диаметра цилиндрического объекта, обеспечивающего высокую точность измерений и автоматическую калибровку измерительного комплекса. Поставленная задача решается тем, что в оптико-электронном способе измерения диаметра цилиндрического объекта, при котором оптико-электронный измеритель оснащают оптически связанными источником излучения и многоэлементным фотоприемником, при этом между источником излучения и многоэлементным фотоприемником располагают измеряемый цилиндрический объект и два калибровочных объекта с известными диаметрами, одновременно с измерением видимого диаметра цилиндрического объекта измеряют видимые диаметры калибровочных объектов, а итоговое значение диаметра цилиндрического объекта вычисляют, используя полученные значения измеренных видимых диаметров объектов и линейную зависимость видимого диаметра от известных. 1 ил.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. В заявленном способе измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (далее - ЛДА) ЛДА и иммерсионный оптический контейнер располагают относительно друг друга так, что оптическая ось прибора ЛДА расположена под углом 90 градусов к фронтальной стенке иммерсионного оптического контейнера, согласно изобретению применяют несколько приборов ЛДА, излучающих суммарно 6 лазерных пучков с одинаковыми длинами волн. При этом используют иммерсионный оптический контейнер, фронтальная стенка которого имеет количество граней, равное количеству приборов ЛДА. Технический результат - обеспечение возможности измерения одновременно трех компонент вектора скорости (полного вектора скорости) в одной и той же точке гидропотока. 1 ил.

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве содержит этап, на котором источник излучения формирует на поверхности исследуемого объекта световое пятно в виде двух пересекающихся световых линий за счет освещения исследуемого объекта засветкой в виде двух ортогональных световых ножей. Величину отклонения исследуемого объекта определяют по отклонению центра пересечения световых линий на принимаемом изображении, а ориентацию исследуемого объекта в пространстве определяют на основании значений двух углов наклона световых линий на принимаемом изображении. Технический результат заключается в повышении точности измерений отклонений объекта. 1 ил.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным пространственным распределением интенсивности. В результате сечения этих лучей поверхностью проката формируются облака освещенных точек на противоположных поверхностях проката. Оптические системы регистрируют рассеянное поверхностью проката излучение в виде двухмерных проективных распределений облаков освещенных точек. Причем пространственное распределение интенсивности наборов световых лучей выбирают таким образом, чтобы проективные распределения облаков освещенных точек в плоскости изображений оптических систем характеризовались целевыми параметрами, устойчивыми к локальным искажениям облаков освещенных точек и зависящими от положения проката в пространстве и его наклона. В процессе измерения проката вычисляют целевые параметры проективных распределений облаков освещенных точек. Определяют толщину проката с помощью взаимно-однозначного соответствия между целевыми параметрами проективных распределений облаков освещенных точек, геометрическим положением измеряемого проката в пространстве и его толщиной, полученного в результате калибровки. Технический результат - повышение точности определения толщины изделия при измерениях горячего проката при наличии высоких градиентов температуры воздушных масс в области распространения оптических сигналов. 7 ил.

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический показатель и диагностируют заболевание по значению диагностического показателя. При этом в качестве биологической жидкости используют мочу пациента, а диагностический показатель пациента вычисляют как среднеквадратичное отклонение от эталонной частотно-временной флуктуации интенсивности светорассеяния в полосе частот 1-106 Гц. Изобретение обеспечивает раннюю неинвазивную диагностику онкологических заболеваний, особенно онкоурологических. 15 ил.

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой или под пленкой, от которого образуются лучи света, направленные под углами - меньшими предельного угла отражения на границе пленка - воздух и большими предельного угла отражения на границе пленка - воздух. Фиксируют изображение искаженного светового пятна, образованного на твердой поверхности под пленкой в результате полного внутреннего отражения света на границе раздела пленка - воздух, на видеокамеру в течение всего времени измерения, обрабатывают на компьютере, измеряют геометрические размеры светового пятна и определяют толщину пленки по формуле: h=(D-d)/[4tg arcsin (n2/n1)], где h - толщина пленки, D - длина главной диагонали эллипса, аппроксимирующего область светового кольца, d - размер источника света на поверхности, n2 - коэффициент преломления воздуха, n1 - коэффициент преломления материала пленки. Технический результат - создание простого способа, обладающего несложной калибровкой и обеспечивающего возможность прямых непрерывных измерений меняющегося во времени поля толщин прозрачной пленки с малой погрешностью измерения. 2 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике, в частности к измерению воздушного зазора электрической машины, например гидрогенератора

 


Наверх