Патенты автора Помысов Андрей Сергеевич (RU)

Изобретение относится к радиолокационной технике и может использоваться для обзора пространства. Техническим результатом является уменьшение времени завязки трассы выбранных объектов. Для этого сканируют диаграммой направленности по азимуту, выполняют последовательную обработку данных в дискретном времени, в каждом азимутальном положении в режиме передачи формируют передающую диаграмму направленности веерной формы, в режиме приема формируют приемную диаграмму направленности, каждый луч которой имеет игольчатую форму, а соседние лучи перекрываются по уровню половинной мощности, при этом ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения, выполняют обнаружение объектов, измерение их скорости, дальности и угломестной координаты моноимпульсным методом обработки сигналов. В случае если по измеренным значениям дальности и скорости обнаруженного объекта по заранее принятому критерию принимают решение о необходимости уточнения координат объекта, то выполняют перемещение передающей и приемной диаграмм направленности путем их электронного сканирования в одно из предыдущих азимутальных положений, выполняют измерение дальности и угломестной координаты выбранного объекта, после перемещения передающей и приемной диаграмм направленности продолжают обзор пространства. 4 ил.

Использование: изобретение относится к антенной технике и предназначено для построения узкой диаграммы направленности в приемных фазированных антенных решетках. Сущность: в способе принимают сигнал посредством антенной решетки, при необходимости сужения диаграммы направленности в горизонтальной плоскости формируют левый RL и правый RR лучи диаграммы направленности, вычисляют суммарный луч SLR как сумму модулей левого RL и правого RR лучей в виде SLR=a|RL|+b|RR|, где a+b=2, вычисляют разностный луч DLR как модуль разности левого RL и правого RR лучей в виде DLR=|RL-RR|, после чего вычисляют суженный луч в горизонтальной плоскости RLR в виде , где 0<n<2. В случае необходимости сужения диаграммы направленности в вертикальной плоскости формируют верхний RU и нижний RB лучи диаграммы направленности, вычисляют суммарный луч SUB как сумму модулей верхнего RU и нижнего RB лучей в виде SUB=а'|RU|+b'|RB|, где a'+b'=2, вычисляют разностный луч DUB как модуль разности верхнего RU и нижнего RB лучей в виде DUB=|RU-RB|, после чего вычисляют суженный луч RUB в вертикальной плоскости в виде , где 0<m<2. В случае сужения диаграммы направленности в обеих плоскостях находят результирующую диаграмму направленности как , где 0<q<∞, 0≤с≤2, 0≤p≤2, с+р=2 или как , где 1≤g≤2. В случае сужения диаграммы направленности в горизонтальной плоскости левый и правый лучи диаграммы направленности формируют, исходя из требуемого направления суженного луча в горизонтальной плоскости θ0, соответственно в направлениях θ0-θн/2 и θ0+θн/2 путем весового суммирования сигналов с выходов всех элементов антенной решетки, при этом θн – угол разноса между лучами. В случае сужения диаграммы направленности в вертикальной плоскости верхний и нижний лучи диаграммы направленности формируют, исходя из требуемого направления суженного луча в вертикальной плоскости ϕ0, в направлениях ϕ0+ϕV2 и ϕ0-ϕV2 путем взвешенного суммирования сигналов с выходов всех элементов антенной решетки, при этом ϕV – угол разноса между лучами. Для формирования многолучевой диаграммы направленности с суженными лучами для линейной конфигурации антенной решетки формируют соответствующее количество пар лучей, а для плоской конфигурации антенной решетки – соответствующее количество левых, правых, верхних и нижних лучей, из которых формируют суженные результирующие лучи. Технический результат: увеличение коэффициента усиления антенной решетки за счет использования для формирования диаграммы направленности всей площади антенной решетки. 1 ил.

Изобретение относится к области радиолокации, конкретно к обработке радиолокационного сигнала в импульсно-доплеровских радиолокационных станциях (РЛС), и может быть использовано в системах обработки первичной радиолокационной информации импульсно-доплеровских РЛС различного назначения. Техническим результатом изобретения является обеспечение перераспределения мощности передатчика: уменьшение среднего энергетического потенциала активной фазированной антенной решетки (АФАР) в течение излучения пачки зондирующих импульсов при сохранении характеристик принятого для обработки сигнала либо уменьшение потерь на обработку сигнала при сохранении среднего энергетического потенциала АФАР. В заявленном способе в режиме передачи используют АФАР с каналами, включаемыми и отключаемыми посредством электронных ключей. Перед излучением пачки N зондирующих импульсов производят выбор оконной функции, обеспечивающей когерентное накопление энергии принятых сигналов. Для каждого зондирующего импульса в пачке оценивают значение энергетического потенциала АФАР, при котором амплитуда сигнала на входе АФАР в режиме приема будет пропорциональна соответствующему значению выбранной оконной функции. Для каждого зондирующего импульса в пачке устанавливают состояния электронных ключей АФАР в режиме передачи, при которых будет достигаться соответствующее значение энергетического потенциала АФАР при постоянном положении фазового центра включенных каналов. Далее излучают пачку N когерентных зондирующих импульсов с периодом следования Т. В промежутках между излучениями пачки зондирующих импульсов принимают сигналы, отраженные от объектов в зондируемой области пространства, всеми каналами АФАР в режиме приема. Усиливают принятые сигналы каналов и переносят их на промежуточную частоту с формированием квадратурных составляющих. Выполняют дискретизацию квадратурных составляющих сигналов каналов, записывают N последовательностей квадратурных составляющих сигналов каналов по Nt отсчетам. Складывают соответствующие отсчеты N последовательностей квадратурных составляющих сигналов всех каналов АФАР с одинаковыми весами, выполняют согласованную фильтрацию суммарной последовательности из Nt отсчетов, обнаруживают объекты с определением дальности и радиальной скорости. 7 ил., 2 табл.

Изобретение относится к области радиотехники СВЧ и КВЧ диапазонов, а именно к фазированным антенным решеткам, и может быть использовано в системах радиосвязи, радиопеленгации и радиолокации. Суть способа состоит в том, что перед определением комплексных амплитуд возбуждения каналов фазированной антенной решетки измерительную антенну перемещают в плоскости, параллельной плоскости раскрыва фазированной антенной решетки. Выбирают для проведения измерений комплексных амплитуд возбуждения каналов фазированной антенной решетки сетку измерений, узловые точки которой расположены над антенными элементами фазированной антенной решетки. Разбивают раскрыв фазированной антенной решетки на N одинаковых фрагментов. Выбирают опорный фрагмент из М антенных элементов, расположенных в центре раскрыва фазированной антенной решетки. Число антенных элементов и размеры опорного фрагмента с учетом удаления измерительной антенны от плоскости раскрыва фазированной антенной решетки должны быть заключены в область главного луча измерительной антенны. Переходят к измерениям и перемещают последовательно измерительную антенну от одного антенного элемента опорного фрагмента к другому антенному элементу, останавливая измерительную антенну в узловых точках. Производят измерения комплексных амплитуд возбуждения каналов этого фрагмента фазированной антенной решетки при использовании измерительной антенны в режиме передачи. По результатам измерений калибруют опорный фрагмент фазированной антенной решетки так, чтобы все каналы опорного фрагмента имели одинаковые амплитуды и фазы. Затем устанавливают измерительную антенну в точке, соответствующей фазовому центру опорного фрагмента, и производят измерения комплексных коэффициентов каналов фазированной антенной решетки при неподвижной измерительной антенне. Определяют коэффициенты которые будут в дальнейшем использованы как комплексные нормирующие множители для калибровки остальных N-1 фрагментов. Последовательно устанавливают измерительную антенну в центр каждого n-го фрагмента из N-1 и производят измерения комплексных амплитуд возбуждения каналов этого фрагмента при неподвижной измерительной антенне. Уточняют комплексные амплитуды возбуждения каналов фазированной антенной решетки в фрагменте раскрыва с учетом направленных свойств измерительной антенны, умножая комплексные амплитуды возбуждения каналов этого фрагмента на соответствующие комплексные нормирующие множители и получая искомые комплексные амплитуды возбуждения каналов фазированной антенной решетки Техническим результатом изобретения является выигрыш в быстродействии проводимых измерений и калибровки фазированной антенной решетки. 5 ил.

Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Технический результат - увеличение точности измерения азимутальной координаты объекта за счет использования моноимпульсного метода измерения вместо метода максимума. Указанный результат достигается за счет того, что в каждом азимутальном положении диаграммы направленности (ДН) в режиме передачи цифровая антенная решетка формирует веерную передающую ДН в угломестной плоскости, в режиме приема в случае размещения приемных лучей в узлах квадратной сетки формируют две приемных многолучевых в угломестной плоскости ДН с лучами игольчатой формы, при этом соседние лучи в ДН перекрываются по уровню L, равному половине мощности от максимума, размещают первую и вторую ДН параллельно друг другу таким образом, чтобы лучи с одинаковыми угломестными координатами перекрывались по уровню L, а азимутальная координата передающего луча соответствовала линии пересечения лучей первой и второй ДН. В случае размещения приемных лучей в узлах треугольной сетки формируют три приемных многолучевых в угломестной плоскости ДН с лучами игольчатой формы, при этом соседние лучи в ДН перекрываются по уровню L, размещают вторую и третью ДН параллельно друг другу таким образом, чтобы лучи с одинаковыми угломестными координатами перекрывались по уровню L, а азимутальная координата передающего луча соответствовала линии пересечения лучей второй и третьей ДН, совмещают линию расположения максимумов лучей первой ДН с линией пересечения лучей второй и третьей ДН, совмещают угломестные координаты максимумов лучей второй и третьей приемных ДН с линией пересечения лучей первой приемной ДН, при обнаружении объектов, измерении их дальности и угловых координат используется моноимпульсный метод обработки сигналов каждой из соседних пар приемных лучей. 8 ил.

Изобретение относится к области радиотехники СВЧ и КВЧ диапазонов. Определяют амплитудно-фазовое распределение в раскрыве фазированной антенной решетки, при котором заданная диаграмма направленности ориентирована в направлении u0, выбирают пространственные положения парциальных лучей только в области главного луча заданной диаграммы направленности. Формирование расширенной диаграммы направленности производят тремя парциальными лучами, причем центральный парциальный луч ориентирован в заданном направлении u0, а два боковых парциальных луча смещены в противоположных относительно центрального луча направлениях на угол u1. Значение угла u1 выбирают из решения оптимизационной задачи по критерию минимума , где ƒ(u-u0), ƒ(u-u0+u1), ƒ(u-u0-u1) - соответственно диаграммы направленности центрального парциального и двух боковых парциальных лучей; u0=0,5kLsinθ0 - направление максимума формируемой диаграммы направленности и центрального парциального луча в обобщенных координатах; u1=0,5kLsinθ1 - смещение боковых парциальных лучей относительно максимума формируемой диаграммы направленности в обобщенных координатах; а - амплитуды отклоненных боковых парциальных лучей; u=0,5kLsinθ - обобщенная координата; L - размер раскрыва фазированной антенной решетки в плоскости формируемой расширенной диаграммы направленности; k - волновое число. Амплитуды боковых парциальных лучей определяют в соответствии с выражением а=(ƒ(Δ)-0,707)(0,707(ƒ(u1)+ƒ(-u1))-(ƒ(Δ+u1)+ƒ(Δ-u1)))-1, где Δ - полуширина диаграммы направленности суммарного луча по уровню половинной мощности. Результирующее амплитудно-фазовое распределение в раскрыве фазированной антенной решетки рассчитывают по формуле А(x)=A0(x)(1+a(exp(ikxsinθ1)+exp(-ikxsinθ1)))=A0(x)(1+2acos(kxsinθ1)), где A0(x) - амплитудно-фазовое распределение в раскрыве, обеспечивающее формирование центрального парциального луча в направлении u0. Технический результат заключается в повышении быстродействия. 7 ил.

Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Достигаемый технический результат - уменьшение времени обзора и повышение точности измерения координат объектов. Согласно способу, в каждом азимутальном положении диаграммы направленности в режиме передачи цифровая антенная решетка формирует веерную передающую диаграмму направленности в угломестной плоскости, в режиме приема принимаемые отраженные сигналы с выходов антенных элементов представляются в виде цифровых отсчетов, из которых путем взвешенного суммирования формируется приемная многолучевая в угломестной плоскости диаграмма направленности с лучами игольчатой формы, при этом соседние лучи перекрываются по уровню половинной мощности, при обнаружении объектов, измерении их дальности и угломестной координаты используется моноимпульсный метод обработки сигналов каждой из соседних пар приемных лучей, при этом азимутальной координатой обнаруженных объектов является текущее азимутальное положение диаграммы направленности. При вращении антенной системы поддерживают постоянство азимутального положения передающей и приемной диаграмм направленности путем их электронного сканирования в направлении, противоположном ходу вращения антенной системы, до тех пор, пока угловой сдвиг антенной не достигнет величины Δθобз., после чего осуществляют скачкообразное перемещение передающей и приемной диаграмм направленности путем их электронного сканирования в следующее азимутальное положение, отличающееся от предыдущего на угол Δθобз. по ходу вращения антенной системы. 4 ил.

Изобретение относится к антенной технике, в частности к способам определения диаграммы направленности активных фазированных антенных решеток (АФАР) в процессе их настройки и исследований. АФАР располагают на заданном расстоянии от вспомогательной антенны, излучают формируемое электромагнитное поле в направлении исследуемой АФАР и принимают сигналы, излученные вспомогательной антенной, исследуемой АФАР. При неподвижном опорно-поворотном устройстве измеряют комплексные коэффициенты передачи каждого приемного канала, формируя на их основе калибровочные коэффициенты в режиме приема. Затем принимают исследуемой АФАР сигналы, излученные вспомогательной антенной, и проводят измерения комплексных коэффициентов передачи каждого приемного канала, формируя на их основе комплексные ДН приемных каналов с учетом сферичности фазового фронта принятой электромагнитной волны и сформированных калибровочных коэффициентов в режиме приема, путем вращения АФАР, размещенной на опорно-поворотном устройстве. ДН АФАР в режиме приема определяют на основе математической модели, используя сформированные комплексные ДН приемных каналов. Для получения ДН АФАР в режиме передачи подключают формирователь сигналов поочередно ко входу каждого передающего канала АФАР, измеряют комплексный коэффициент передачи передающего канала при неподвижном опорно-поворотном устройстве и без открытого излучения АФАР в свободное пространство и преобразуют его в амплитуду и фазу сигнала. По результатам преобразованных амплитуд и фаз комплексных коэффициентов передачи каналов определяют амплитудно-фазовое распределение на выходах передающих каналов АФАР. ДН АФАР в режиме передачи находят в виде суммы взвешенных комплексных ДН приемных каналов АФАР с коэффициентами, соответствующими комплексным амплитудам амплитудно-фазового распределения на выходах передающих каналов АФАР. Технический результат заключается в исключении открытого излучения при определении ДН АФАР в передающем режиме. 2 ил.

Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Достигаемый технический результат - уменьшение времени обзора и повышение точности измерения координат объектов. Согласно способу в каждом азимутальном положении диаграммы направленности в режиме передачи цифровая антенная решетка формирует веерную передающую диаграмму направленности в угломестной плоскости, в режиме приема принимаемые отраженные сигналы с выходов антенных элементов представляются в виде цифровых отсчетов, из которых путем взвешенного суммирования формируется приемная многолучевая в угломестной плоскости диаграмма направленности с лучами игольчатой формы, при этом соседние лучи перекрываются по уровню половинной мощности, при обнаружения объектов, измерении их дальности и угломестной координаты используется моноимпульсный метод обработки сигналов каждой из соседних пар приемных лучей, при этом азимутальной координатой обнаруженных объектов является текущее азимутальное положение диаграммы направленности. 4 ил.

Использование: для формирования компенсационной диаграммы направленности в плоской антенной решетке. Сущность изобретения заключается в том, что осуществляют прием сигналов антенными элементами плоской антенной решетки с электронным сканированием лучом и суммируют их, формируя остронаправленную сканирующую диаграмму направленности плоской антенной решетки с использованием выбранных комплексных амплитуд антенных элементов с учетом требуемого превышения уровня компенсационной диаграммы направленности над уровнем боковых лепестков остронаправленной сканирующей диаграммы направленности. Формирование слабонаправленной диаграммы направленности производят путем суммирования сигналов антенных элементов, расположенных в центральных ортогональных линейках плоской антенной решетки, с комплексными амплитудами, соответствующими комплексным амплитудам антенных элементов плоской антенной решетки в направлении на источник полезного сигнала. Для формирования компенсационной диаграммы направленности вычитают сигнал, соответствующий остронаправленной сканирующей диаграмме направленности, из сигнала, соответствующего слабонаправленной диаграмме направленности, умноженной на весовой коэффициент, равный отношению норм остронаправленной сканирующей и слабонаправленной диаграмм направленности при ориентации луча плоской антенной решетки в направлении нормали к плоскости раскрыва. Технический результат: обеспечение требуемого превышения уровня компенсационной диаграммы направленности над уровнем боковых лепестков остронаправленной сканирующей диаграммы направленности плоской антенной решетки в широком секторе углов при сохранении чувствительности приемной системы. 12 ил.

Изобретение относится к антенной технике и может быть использовано для оптимального управления комплексными взвешивающими устройствами в каналах антенных решеток по критерию максимума отношения сигнал/шум + помеха

 


Наверх