Патенты принадлежащие Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") (RU)

Изобретение относится к сплавам на основе алюминия для алюминиевых листов и профилей и может быть использовано при изготовлении боковых панелей фюзеляжа, в том числе применяемых в изделиях авиационной техники военного назначения.

Изобретение относится к металлургии, а именно к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, работающих в агрессивных средах до 750-1000°С.

Изобретение относится к области высокомолекулярной химии, а именно к способу получения полиимидного связующего полимеризационного типа, применяемого для изготовления полимерных композиционных материалов, которые могут быть использованы в теплонагруженных элементах конструкций изделий аэрокосмической, судостроительной, автомобильной и других высокотехнологичных областей промышленности.

Изобретение относится к высокотемпературным композитам, стойким к окислению и термическим ударам при контакте с расплавленным металлом, и может быть использовано при изготовлении сопел для распыления металлов и сплавов.

Изобретение относится к области металлургии, а именно к технологии производства магнитных сплавов системы железо-алюминий-никель-кобальт, применяемых для получения постоянных магнитов электродвигателей и навигацинных устройств.

Изобретение относится к области металлургии, в частности к получению оксидного покрытия на заготовках из деформируемых титановых сплавов, используемых для производства листов способом горячей прокатки многослойных пакетов.

Изобретение относится к жаростойким покрытиям. Жаростойкое покрытие содержит, масс.

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, используемым для получения порошков, применяющихся для получения деталей с использованием аддитивных технологий.

Изобретение относится к области металлургии, в частности к способам получения изделий из высокожаропрочных деформируемых никелевых сплавов, и может найти применение в авиационной промышленности в качестве метода получения заготовок дисков газотурбинных двигателей (ГТД).

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, и может быть использовано для изготовления деталей горячего тракта газотурбинных двигателей и установок, длительно работающих при температурах до 1000°C.

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С.

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С.

Изобретение относится к области металлургии, в частности к способам получения изделий из высокожаропрочных деформируемых никелевых сплавов, и может найти применение в авиационной промышленности, а также в энергетическом машиностроении в качестве способа получения заготовок дисков газотурбинных двигателей (ГТД).

Изобретение относится к испытательной технике и может быть использовано для оценки работоспособности металлов в конструкции.

Изобретение относится к области металлургии, а именно к получению изделий из гранулируемого жаропрочного никелевого сплава, и может быть использовано для изготовления дисков газотурбинных двигателей, работающих при температурах до 800°С и выше.

Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке титановых сплавов.

Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке титановых сплавов.

Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке титановых сплавов.

Изобретение относится к материалам, предназначенным для огнезащиты конструктивных элементов, работающих в экстремальных условиях воздействия пламени, возникшего в результате пожара.

Изобретение относится к получению металлокерамической порошковой композиции, использующейся для изготовления деталей методом аддитивных технологий.

Изобретение относится к слоистым гибридным композиционным материалам для применения в элементах планера, прежде всего в конструкции обшивки крыла самолета, и другой транспортной технике.

Изобретение относится к теплозвукоизоляционным материалам, в частности к волокнистым материалам авиационного назначения с пониженным удельным весом, высокими тепловыми свойствами, отвечающим требованиям пожарной безопасности.

Изобретение относится к огнезащитным теплоизоляционным изделиям, выполненным в виде панели, используемым в различных областях техники, для защиты от воздействия открытого пламени спасательного средства и инженерных сооружений, работающих в акваториях морей.

Изобретение относится к теплозащитным покрытиям (материалам), предназначенным для защиты узлов и агрегатов, работающих в условиях воздействия аэродинамических и газодинамических тепловых потоков.

Изобретение относится к огнезащитным теплоизоляционным изделиям, выполненным в виде панели, используемым в различных областях техники, для защиты от воздействия открытого пламени спасательного средства и инженерных сооружений, работающих в акваториях морей.

Изобретение относится к теплозащитным покрытиям (материалам), предназначенным для защиты узлов и агрегатов, работающих в условиях воздействия аэродинамических и газодинамических тепловых потоков.

Изобретение относится к области металлургии, в частности к сплавам на основе кобальта, и может быть использовано для ремонта и упрочнения рабочих лопаток турбин авиационных газотурбинных двигателей с рабочей температурой не менее 1000°С.

Изобретение относится к области металлургии, а именно к способам обработки деталей из интерметаллидных сплавов, полученных аддитивными технологиями, и может быть использовано для повышения плотности сложнопрофильных деталей газотурбинных двигателей.

Изобретение относится к области металлургии, конкретно к производству высокопрочных мартенситностареющих сталей, микролегированных редкоземельными металлами (РЗМ), и может использоваться для изготовления высоконагруженных деталей большого сечения, силовых деталей, работающих от -70 до 400°C в условиях высоких нагрузок, например валов газотурбинных двигателей, деталей шасси, крыла и других деталей, применяемых в авиационной технике и в машиностроении.

Изобретение относится к области пленкообразующих ингибирующих составов и может быть использовано для дополнительной защиты от коррозии элементов конструкций, изготовленных из алюминиевых сплавов.

Изобретение относится к области звукопоглощающих полимерных композиционных материалов. Способ изготовления звукопоглощающего материала включает приготовление вспененной полиуретановой композиции посредством смешивания форполимера и полиизоцианатных групп, формирование тыльной части звукопоглощающего материала в виде слоя полиуретановой композиции толщиной от 5 до 50% от общей толщины звукопоглощающего материала посредством заполнения указанной композицией нижней части оснастки с последующей выдержкой слоя полиуретановой композиции в течение от 20 до 60 минут в интервале температур от 20 до 80°С, наложение на указанный слой волокнистого материала толщиной от 30 до 90% от общей толщины звукопоглощающего материала, заполнение оснастки полиуретановой композицией с получением фронтальной и боковых частей звукопоглощающего материала, при этом таким количеством, чтобы обеспечить толщину фронтальной части звукопоглощающего материала от 5 до 50% от общей толщины звукопоглощающего материала, а также толщину каждой боковой части звукопоглощающего материала от 5 до 20% от общей толщины звукопоглощающего материала, с последующей выдержкой всего объема композиции при температуре от 20 до 80°С в течение от 20 до 120 минут.

Группа изобретений относится к порошковым термопластичным материалам на основе полиамидов, которые могут быть использованы в качестве расходного материала для аддитивного синтеза изделий методом селективного лазерного сплавления, порошкового связующего и компонента порошковых покрытий.

Изобретение относится к области металлургии, конкретно к производству высокопрочных мартенситностареющих сталей, микролегированных редкоземельными металлами (РЗМ), и может использоваться для изготовления высоконагруженных деталей большого сечения, силовых деталей, работающих от -70 до 400°C в условиях высоких нагрузок, например валов газотурбинных двигателей, деталей шасси, крыла и других деталей, применяемых в авиационной технике и в машиностроении.

Изобретение относится к области пленкообразующих ингибирующих составов и может быть использовано для дополнительной защиты от коррозии элементов конструкций, изготовленных из алюминиевых сплавов.

Изобретение относится к области звукопоглощающих полимерных композиционных материалов. Способ изготовления звукопоглощающего материала включает приготовление вспененной полиуретановой композиции посредством смешивания форполимера и полиизоцианатных групп, формирование тыльной части звукопоглощающего материала в виде слоя полиуретановой композиции толщиной от 5 до 50% от общей толщины звукопоглощающего материала посредством заполнения указанной композицией нижней части оснастки с последующей выдержкой слоя полиуретановой композиции в течение от 20 до 60 минут в интервале температур от 20 до 80°С, наложение на указанный слой волокнистого материала толщиной от 30 до 90% от общей толщины звукопоглощающего материала, заполнение оснастки полиуретановой композицией с получением фронтальной и боковых частей звукопоглощающего материала, при этом таким количеством, чтобы обеспечить толщину фронтальной части звукопоглощающего материала от 5 до 50% от общей толщины звукопоглощающего материала, а также толщину каждой боковой части звукопоглощающего материала от 5 до 20% от общей толщины звукопоглощающего материала, с последующей выдержкой всего объема композиции при температуре от 20 до 80°С в течение от 20 до 120 минут.

Группа изобретений относится к порошковым термопластичным материалам на основе полиамидов, которые могут быть использованы в качестве расходного материала для аддитивного синтеза изделий методом селективного лазерного сплавления, порошкового связующего и компонента порошковых покрытий.

Группа изобретений относится к порошковым термопластичным материалам на основе полиамидов, которые могут быть использованы в качестве расходного материала для аддитивного синтеза изделий методом селективного лазерного сплавления, порошкового связующего и компонента порошковых покрытий.

Изобретение относится к области звукопоглощающих полимерных композиционных материалов. Способ изготовления звукопоглощающего материала включает приготовление вспененной полиуретановой композиции посредством смешивания форполимера и полиизоцианатных групп, формирование тыльной части звукопоглощающего материала в виде слоя полиуретановой композиции толщиной от 5 до 50% от общей толщины звукопоглощающего материала посредством заполнения указанной композицией нижней части оснастки с последующей выдержкой слоя полиуретановой композиции в течение от 20 до 60 минут в интервале температур от 20 до 80°С, наложение на указанный слой волокнистого материала толщиной от 30 до 90% от общей толщины звукопоглощающего материала, заполнение оснастки полиуретановой композицией с получением фронтальной и боковых частей звукопоглощающего материала, при этом таким количеством, чтобы обеспечить толщину фронтальной части звукопоглощающего материала от 5 до 50% от общей толщины звукопоглощающего материала, а также толщину каждой боковой части звукопоглощающего материала от 5 до 20% от общей толщины звукопоглощающего материала, с последующей выдержкой всего объема композиции при температуре от 20 до 80°С в течение от 20 до 120 минут.

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке высоколегированных псевдо-β титановых сплавов и изделий из них, и может быть использовано в авиационной технике.

Изобретение относится к области металлургии, в частности к производству литейных жаропрочных углеродсодержащих и безуглеродистных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей.

Изобретение относится к термостойким композициям с высокой отражательной и низкой излучательной способностью для покрытий, которые могут наносится на жесткие элементы конструкций, подвергающихся воздействию открытого пламени.

Изобретение относится к строительной отрасли. Способ изготовления полого конструктивного элемента из композиционного материала включает заполнение газом удлиненной надувной формы, нанесение на нее антиадгезионного воздухонепроницаемого слоя и слоя армирующего наполнителя с получением заготовки, придание заготовке дугообразной формы, нанесение на нее гибкого воздухонепроницаемого слоя, пропитку слоя армирующего наполнителя связующим методом вакуумной инфузии, отверждение связующего и удаление из заготовки удлиненной надувной формы.

Изобретение относится к стеклопластикам, фенолформальдегидным связующим и композиционным материалам на их основе, предназначенным для изготовления пожаробезопасных изделий.

Изобретение относится к области металлургии, а именно к гранулируемым интерметаллидным сплавам, и может быть использовано для изготовления инструментов для высокотемпературной изотермической штамповки.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, и может быть использовано при изготовлении рабочих лопаток газотурбинных установок.

Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием.

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к устройствам, предназначенным для автоматизированного экспресс-контроля состава сплавов на основе железа, а именно содержания ферритной фазы в различных марках стали при литье и, прежде всего, в стальных пробах и калибровочных образцах.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al. Сплав на основе интерметаллида Ni3Al содержит, мас.%: алюминий 8,2-8,8, хром 4,5-5,5, вольфрам 4,1-4,6, молибден 4,5-5,5, титан 0,8-1,2, углерод 0,12-0,18, кобальт 3,5-4,5, по меньшей мере один редкоземельный металл, выбранный из группы, включающей лантан, скандий и иттрий 0,015-0,3, никель - остальное.

Группа изобретений относится к области многослойных материалов в виде пакета из листов алюминиевой фольги или из основы в виде тонкого алюминиевого листа и листов алюминиевой фольги и к эпоксидной клеевой композиции.

Изобретение относится к материалам, предназначенным для тепловой защиты конструктивных элементов, работающих в условиях воздействия тепловых аэродинамических и газодинамических тепловых потоков.
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх