Патенты принадлежащие Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук (RU)

Изобретение относится к области измерительной техники и может быть использовано для определения вибрационным методом изменения сдвиговой вязкости небольших объемов жидкости в локальной области при одновременном измерении ее температуры.

Изобретение относится к радиотехнике и может быть использовано при разработке СВЧ-аппаратуры различного назначения, в частности для шумовой радиолокации, радиовидения и медицины.

Изобретение относится к акустическим эхолокационным системам подповерхностного зондирования и может быть использовано для обнаружения локальных неоднородностей в акустически прозрачной среде.

Изобретение относится к геофизике, может использоваться для зондирования плазменного слоя геомагнитного хвоста и ионосферы Земли и предназначено для мониторинга окружающей среды, обеспечения радиосвязи и навигации, информационного обеспечения сельского хозяйства, здравоохранения, безопасности космической деятельности, исследования эффектов солнечной активности и солнечного ветра, в том числе в периоды магнитных бурь.

Изобретение относится к области СВЧ-техники и может быть использовано для измерения и контроля жидкостей, в частности водных растворов и суспензий веществ химической и биологической природы в различных технологических процессах, исследованиях структуры водных растворов, определения влагосодержания углеводородов, в том числе и «на потоке», а также в биофизических исследованиях.

Изобретение относится к исследованию и анализу газов с помощью электромагнитного излучения. Спектрометр состоит из последовательно размещенных источника микроволнового излучения, ячейки с исследуемым газом, приемной системы, включающей в себя детектор и блок обработки сигнала, и блока управления частотой источника излучения.

Использование: для физико-химического анализа жидких и газообразных сред с использованием акустических волн.

Изобретение относится к медицинской технике. Сенсор для непрерывного измерения артериального давления содержит аппликатор (1), рабочую камеру (11) с датчиком давления (20), подключенным через АЦП (321) к микроконтроллеру (32), который связан с воздушным насосом (40, 42) и устройством отображения и обработки данных (33).

Использование: для приема и генерации излучения в диапазоне частот 100 ГГц - 1 ТГц. Сущность изобретения заключается в том, что криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приемных систем на основе РДП, изготовленный на подложке из кристаллического изолирующего материала, обратная сторона которой выполнена шероховатой с размерами неоднородностей, соизмеримыми с длиной звуковой волны субтерагерцового диапазона в кристаллической подложке, согласно изобретению введены поглощающие резисторы, изготовленные из материала с удельным сопротивлением в диапазоне 2-50 мкОм⋅см, расположенные в микрополосковой линии вокруг генератора, позволяющие увеличить параметр затухания α в РДП, что обеспечивает дополнительное поглощение и тем самым подавление ступеней Фиске в резонансном режиме работы.

Использование: для приема и генерации излучения в диапазоне частот 100 ГГц - 1 ТГц. Сущность изобретения заключается в том, что криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приемных систем на основе РДП, изготовленный на подложке из кристаллического изолирующего материала, обратная сторона которой выполнена шероховатой с размерами неоднородностей, соизмеримыми с длиной звуковой волны субтерагерцового диапазона в кристаллической подложке, согласно изобретению введены поглощающие резисторы, изготовленные из материала с удельным сопротивлением в диапазоне 2-50 мкОм⋅см, расположенные в микрополосковой линии вокруг генератора, позволяющие увеличить параметр затухания α в РДП, что обеспечивает дополнительное поглощение и тем самым подавление ступеней Фиске в резонансном режиме работы.

Изобретение относится к медицинской технике. Сенсор для непрерывного измерения артериального давления содержит аппликатор (1), рабочую камеру (11) с датчиком давления (20), подключенным через АЦП (321) к микроконтроллеру (32), который связан с воздушным насосом (40, 42) и устройством отображения и обработки данных (33).

Оротрон // 2634304
Изобретение относится к радиоэлектронике, в частности к конструкции источника высокочастотных электромагнитных колебаний коротковолновой части миллиметрового и субмиллиметрового диапазона волн.

Изобретение относится к метрологии, в частности к акустическим датчикам. Чувствительный элемент для акустического жидкостного сенсора содержит плоскую пластину из монокристаллического кремния, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой встречно-штыревых преобразователей для возбуждения и приема акустических пластинчатых мод колебаний, локальную ванну для жидкого аналита.

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях.

Изобретение относится к медицинской технике. Устройство для непрерывного неинвазивного измерения кровяного давления содержит установленный в корпусе (11) аппликатор (10), выполненный в виде заполненной жидкостью (15) полости (12) с гибкой мембраной (13) для обеспечения механического контакта с тканями пациента (100) непосредственно над лучевой артерией (101) и связанный с полостью преобразователь (14) давления жидкости в электрический сигнал.

Изобретение относится к области измерительной техники, а именно к непрерывным измерениям с высокой точностью текущих значений амплитуды низкочастотных синусоидальных сигналов, достаточно медленно изменяющихся во времени по амплитуде и частоте.

Изобретение относится к метрологии, в частности, к способам измерения добротности механической колебательной системы.

Изобретение относится метрологии, в частности к технике измерения тепловых параметров светодиодов. Через светодиод пропускают последовательность импульсов греющего тока Iгр, широтно-импульсно модулированную по гармоническому закону, с частотой модуляции Ω и глубиной модуляции а; во время действия импульсов греющего тока измеряют напряжение на светодиоде и центральную длину волны излучения светодиода с известным температурным коэффициентом ΚТλ, по результатам измерения определяют амплитуду первой гармоники греющей мощности Рm1(Ω), потребляемой светодиодом, и амплитуду первой гармоники центральной длины волны излучения светодиода , а также сдвиг фазы между ними ϕ(Ω) на частоте модуляции греющей мощности, измеряют среднюю за период модуляции мощность оптического излучения светодиода, и модуль теплового импеданса находят по формуле ,а фазу ϕT(Ω) теплового импеданса светодиода определяют как разность фаз между первой гармоникой центральной длины волны излучения светодиода и первой гармоникой греющей мощности.

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого граната (ЖИГ), антенны для возбуждения магнитостатических волн, дополнительно введен слой пьезоэлектрического материала, снабженный металлическими электродами для подачи электрического напряжения, размещенный на поверхности микроволноводной структуры с возможностью пьезомагнитного взаимодействия, при этом микроволноводная структура образована тремя параллельными микроволноводами равной ширины, каждый из которых имеет прямоугольную форму и установлен с зазором друг относительно друга с обеспечением режима многомодовой связи, а антенны расположены на концах микроволноводов таким образом, что входная антенна размещена на одном конце срединного волновода, одна выходная антенна размещена на противоположном конце срединного волновода, а две других - на смежных с ним концах периферийных волноводов.

Заявляемое устройство предназначено для генерации когерентного и некогерентного электромагнитного излучения.

Изобретение относится к устройствам СВЧ-электроники и может быть использовано при конструировании нано- и микроэлектронных элементов для обработки сигналов.

Изобретение относится к системам питания электронных устройств с помощью оптического излучения и может найти применение в измерительных устройствах с гальванической развязкой области измерений и области отображения информации, например в высоковольтных или взрывоопасных устройствах.

Изобретение относится к радиотехнике и может быть использовано при разработке аппаратуры миллиметрового диапазона волн различного назначения.

Изобретение относится к гидроакустической метрологии, в частности к способам измерения вертикального распределения скорости звука в воде.

Изобретение относится к электромагнетизму и может быть использовано для одновременного исследования магнитного, электронного и кристаллического микросостояния объектов.

Изобретение относится к оптоэлектронной измерительной технике и может быть использовано для измерения тепловых параметров полупроводниковых светоизлучающих диодов на различных этапах их разработки и производства, на входном контроле предприятий-производителей светотехнических изделий с использованием светодиодов, а также при выборе режимов эксплуатации указанных изделий.

Изобретение относится к оптоэлектронной измерительной технике и может быть использовано для измерения тепловых параметров полупроводниковых светоизлучающих диодов на различных этапах их разработки и производства, на входном контроле предприятий-производителей светотехнических изделий с использованием светодиодов, а также при выборе режимов эксплуатации указанных изделий.

Использование: для создания сенсора изменения состава атмосферы в замкнутых объемах. Сущность изобретения заключается в том, что газовый сенсор содержит температуропроводную подложку из кристаллического материала с плоскопараллельными поверхностями, на рабочей поверхности которой размещен пленочный нагреватель из электропроводящего материала, а на нерабочей - измеритель температуры на основе акустической линии задержки, электромеханические пьезоэлектрические преобразователи встречно-штыревого типа которой подключены к генератору и регистратору выходного сигнала, блок управления нагревателем, пленочный нагреватель выполнен в виде набора обособленных протяженных элементов из газочувствительных материалов, выбранных из условия изменения их электросопротивления при адсорбции различных по составу газов, элементы подключены к индивидуальным выходам блока управления нагревателями, при этом каждый упомянутый элемент ограничен по длинным сторонам канавками, заполненными термо- и звукоизолирующим материалом, измеритель температуры на основе акустической линии задержки выполнен многоканальным по числу протяженных элементов, каждый канал размещен по направлению распространения энергетических потоков поверхностных акустических волн и/или пластинчатых упругих мод разных порядков n в подложке, при этом излучение и прием указанных волн и/или мод производится индивидуальными системами генерации-приема на частотах fn, определяемых выражением fn=Vn/λ, где Vn - скорость поверхностных акустических волн или пластинчатых упругих мод, λ - период встречно-штыревых преобразователей, а протяженные элементы размещены вдоль проекций на рабочую поверхность подложки указанных направлений распространения энергетических потоков..

Изобретение относится к электроизмерениям и может быть использовано для измерения скорости электропроводной жидкости и ее флуктуаций.

Использование: для обработки сигналов в широкополосных СВЧ системах различного назначения. Сущность изобретения заключается в том, что регулируемая СВЧ линия задержки на магнитостатических волнах, содержит установленную неподвижно на основании диэлектрическую подложку с расположенными на ней параллельно и разнесенными друг от друга микрополосковыми преобразователями поверхностных магнитостатических волн (ПМСВ), магнитоактивный элемент, выполненный в виде прямоугольной пластины из диэлектрика с нанесенной на одну сторону пленкой железоиттриевого граната, связанный со средством перемещения относительно основания и обращенный пленкой к преобразователям ПМСВ, постоянный магнит подмагничивания, размещенный в зоне нахождения магнитоактивного элемента, при этом на свободной поверхности пленки железоиттриевого граната образована периодическая структура в виде ряда канавок одинакового размера, средство перемещения магнитоактивного элемента относительно основания выполнено с возможностью вращения в плоскости диэлектрической подложки, при этом наименьшее время задержки соответствует положению продольной оси канавок, параллельной оси преобразователей ПМСВ, а постоянный магнит расположен так, что вектор поля подмагничивания лежит в плоскости диэлектрической подложки и соосно микрополоскам преобразователей ПМСВ.

Использование: для изготовления сверхпроводниковых туннельных переходов, джозефсоновских переходов. Сущность изобретения заключается в том, что наносят без разрыва вакуума трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН контакт); наносят резист, проводят экспозицию, проявление; селективное химическое или ионное травление трехслойной структуры, после стравливания трехслойной структуры проводят планаризацию поверхности напылением через маску диэлектрика толщиной, равной толщине трехслойной структуры, после чего удаляют диэлектрик вне области туннельных переходов и наносят тонкую пленку перемычки (абсорбера) из нормального металла или другого сверхпроводника, при этом этот слой перемычки наносится на планаризованную поверхность и может быть существенно тоньше предыдущих слоев, менее 10 нм.

Изобретение относится к области исследования материалов и может быть использовано для исследования вязкостно-температурных свойств жидкости и количественной оценки интенсивности и динамики структурных превращений в процессе подбора состава смазочных композиций моторных масел на стадии их разработки.

Изобретение относится к электронной технике и может быть использовано при разработке технологии алмазных электронных приборов увеличенной площади.

Изобретение относится к области определения вибрационным методом сдвиговой вязкости небольших объемов жидкости в локальной области при одновременном измерении ее температуры.

Изобретение относится к акустооптическому устройству, предназначенному для управления оптическим излучением посредством акустооптической брэгговской дифракции света на звуке, и может использоваться для управления амплитудой, частотой, фазой и поляризацией оптического излучения.

Изобретение относится к областям радиолокации и дистанционного зондирования и может быть использовано для обнаружения протяженных неоднородностей в оптически непрозрачных средах.

Изобретение относится к волоконной оптике, в частности к технологии изготовления оптических волокон (ОВ) с высоким двулучепреломлением, сохраняющих поляризацию излучения.
Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах.

Использование: для преобразования солнечной энергии в электричество. Сущность изобретения заключается в том, что фотоэлектрический преобразователь содержит воронкообразные сквозные отверстия с просветляющим покрытием и толстопленочное покрытие (с обратной стороны), содержащее сферические микрочастицы, способные отражать сквозные солнечные лучи на грани сквозных отверстий.

Изобретение относится к области термометрии и может быть использовано для измерения и мониторинга малых изменений температуры.

Изобретение относится к аналитическому приборостроению и может быть использовано для физико-химического анализа жидких и газообразных сред.

Изобретение относится к области приборостроения и может быть использовано для измерения температуры активной области светоизлучающих диодов.

Изобретение относится к средствам анализа цифровых изображений. Техническим результатом является обеспечение классификации объектов по геометрическим признакам в лабиринтных структурах.

Изобретение относится к сверхпроводниковой электронике и может быть использовано при создании терагерцовых спектрометров, предназначенных для радиоастрономии, исследования атмосферы Земли, медицинской диагностики, а также для систем контроля и обеспечения безопасности.

Настоящее изобретение относится к способу количественного определения содержания восков и воскоподобных веществ в рафинированных растительных маслах, при котором в кювете размещают пробу горячего растительного масла, производят одновременно облучение пробы и изменение ее температуры, пробу охлаждают от начальной температуры до температуры полного застывания пробы, непрерывно измеряют световые потоки: проходящий через пробу и рассеянный, определяют в зависимости от температуры отношение проходящего и рассеянного световых потоков и по максимуму этого отношения на основе предварительно полученной на эталонных пробах калибровочной кривой определяют количественное содержание восков и воскоподобных веществ в растительном масле.

Изобретение относится к области нанотехнологии и может быть использовано для получения атомно-тонких монокристаллических пленок различных слоистых материалов.

Изобретение относится к области разработки новых элементов и устройств сверхпроводниковой электроники и создания на их основе сверхчувствительных приемных устройств с высоким спектральным разрешением и может быть использовано при создании бортовых и наземных систем, предназначенных для радиоастрономии и мониторинга атмосферы Земли, а также медицинских исследований и систем безопасности.

Изобретение относится к области нанотехнологии и может быть использовано в интегральной СВЧ-электронике для радиотехнической аппаратуры наземного, воздушного, космического базирования.

Изобретение относится к радиотехнике и акустоэлектронике и может быть использовано в устройствах измерительной техники и в радиосвязи.

Изобретение относится к получению металл-полимерных композиционных материалов, предназначенных для применения в радиотехнической аппаратуре в качестве радиопоглощающих и экранирующих материалов.
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх