Патенты принадлежащие Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (НИ ТГУ) (RU)

Изобретение относится к устройству для смешивания расплава алюминия с микропорошками тугоплавких частиц диборида титана и волокнами базальта, содержащему вертикально расположенный в тигле с расплавом стержень с закрепленным на нижнем конце рабочим органом с возможностью его вращения, колебательного вертикального перемещения и перемещения в тигле в горизонтальном и вертикальном направлениях, причем рабочий орган состоит из трех пластин, выполненных в виде четырех плоских лопастей, расположенных под углом 90 градусов друг к другу, при этом пластины жестко закреплены на стержне на одинаковом расстоянии Н = 35 мм друг от друга и смещены на угол 45 градусов относительно друг друга, плоскости пластин ориентированы перпендикулярно стержню, а на периферии каждой из лопастей установлены по два соосных цилиндрических штифта диаметром 4÷8 мм и высотой не более 0.43 Н, ориентированных параллельно стержню и направленных свободными концами в сторону от поверхности лопасти, стержень с рабочим органом выполнен с возможностью периодического изменения направления вращения, при этом угловая скорость вращения стержня, частота и амплитуда его продольных колебаний, периодичность изменения направления вращения определяются соотношениями n = 500÷800 об/мин, ƒ = 10÷20 Гц, х = 0.6÷0.8 мм, t = 3÷5 с, где n - угловая скорость вращения стержня; ƒ - частота продольных колебаний стержня; х - амплитуда продольных колебаний стержня; t - периодичность изменения направления вращения стержня.

Изобретение относится к области испытательной техники и, в частности, для определения траекторных параметров при стрельбе и может использоваться для экспериментального определения внутри и внешнебаллистических параметров.

Изобретение относится к области авиационного и ракетного двигателестроения и может быть использовано при исследовании рабочих процессов в прямоточных воздушно-реактивных и гибридных ракетных двигателях в условиях стендовых испытаний.

Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ), в частности к определению времени задержки зажигания ВЭМ лазерным излучением. Способ определения характеристик зажигания образцов высокоэнергетических материалов лазерным излучением включает измерение времени задержки зажигания при подаче на поверхность образца непрерывного лазерного излучения, отличающийся тем, что исследуемый образец в виде прямого кругового цилиндра предварительно запрессовывают в цилиндрическую трубку, выполненную из прозрачного материала, диаметр лазерного луча расширяют с помощью телескопической системы до диаметра образца, перед подачей лазерного излучения на торцевую поверхность образца создают вращательное движение образца вокруг его оси симметрии с постоянной угловой скоростью, а высоту трубки над облучаемой поверхностью образца и угловую скорость вращения образца определяют в соответствии с соотношениями:h≥3d, где h - высота трубки над облучаемой поверхностью образца, м; d - диаметр образца, м; n - угловая скорость вращения образца, об/с; W - мощность лазерного излучения, Вт; S - площадь торцевой поверхности образца, м2; ΔT* - заданное значение неравномерности нагрева поверхности образца, К; m - количество мод излучения в поперечном сечении лазерного луча; λ - коэффициент теплопроводности материала образца, Вт/(м⋅К); ρ - плотность материала образца, кг/м3; с - удельная теплоемкость материала образца, Дж/(кг⋅К).

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и пьезоприводах.

Изобретение относится к области разработки способов для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения группы капель жидкости при нагреве внешним тепловым потоком.

Изобретение относится к области литейного производства и может быть использовано для получения образцов плоских отливок из алюминиевых и магниевых сплавов. Способ включает нанесение защитного покрытия на внутренние стенки кокиля, сборку кокиля, заливку металла в кокиль, охлаждение металла, разборку кокиля и извлечение отливки.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения капель жидкости при нагреве внешним тепловым потоком.

Изобретение относится к способу электронно-лучевой сварки кольцевого соединения тонкостенных конструкций из высокопрочных алюминиевых сплавов и может быть использовано для изготовления легких конструкций с высокими требованиями по прочности и герметичности.

Изобретение относится к абсорбционно-десорбционной технике сепарации многокомпонентных газовых смесей, а именно, к устройствам сепарации гелия из природного газа. Устройство состоит из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием газа и патрубком вывода насыщенного абсорбента, снабженного подогревателем и соединенного с корпусом десорбера, имеющим патрубок рециркуляции абсорбента в корпус абсорбера, снабженный теплообменником и холодильником, и верхний патрубок выхода обедненного гелием газа, соединенный с каплеуловителем, снабженным емкостью для приема уловленного абсорбента.
Изобретение относится к установке для исследования физических процессов, в частности для исследования динамики разрушения сферического макрообъема жидкости при свободном падении в воздухе. Установка включает тонкостенную эластичную оболочку, наполненную жидкостью, устройство для прокалывания стенки оболочки и систему визуализации процесса разрушения.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения облака твердых частиц в вязкой жидкости.

Использование: для определения коэффициента сопротивления сферической частицы при вдуве газа с ее поверхности. Сущность изобретения заключается в том, что осуществляют измерение силы сопротивления частицы при воздействии на нее газового потока, при этом полую сферическую частицу с пористой оболочкой, размещенную в равномерном потоке газа, подвешивают на консоли, выполненной в виде тонкой трубки с возможностью ее вращения вокруг горизонтальной оси, расположенной перпендикулярно направлению потока обдувающего газа, во внутреннюю полость частицы подают под давлением сжатый газ, измеряют угол поворота консоли от первоначально вертикального направления, объемный расход подаваемого в полость частицы газа и скорость обдувающего потока газа, а зависимость коэффициента сопротивления от объемного расхода газа, вдуваемого с поверхности частицы, определяют исходя из заданного соотношения.

Изобретение относится к судостроению, а именно к судоподъемным и аварийно-спасательным работам. Судоподъемный комплекс содержит траверсу в виде замкнутой трубы, внутренними перегородками разделенной на балластные цистерны, причем, в средних боковых и концевых цистернах установлены газогенераторы с возможностью в процессе подъема отключаться при возвышении за счет крена или дифферента.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения твердых частиц в жидкости. Способ включает введение частиц в кювету с вязкой жидкостью, выполненную в виде правильной призмы с прозрачными стенками, и измерение скорости их гравитационного осаждения в жидкости.

Изобретение относится к области металлургии легких сплавов, в частности к способам получения литьем сплавов на основе алюминия и магния. Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния включает предварительный нагрев герметичной цилиндрической камеры, на боковых стенках и верхней крышке которой выполнено теплозащитное покрытие, погружение нижнего конца патрубка, установленного в днище камеры, в тигель плавильной печи с расплавом, создание вакуума для заполнения герметичной камеры расплавом, перемещение герметичной камеры с расплавом к литейной форме, введение нижнего конца патрубка герметичной камеры в металлоприемник литейной формы и заливку в нее расплава путем подачи под давлением инертного газа в герметичную камеру, при этом предварительный нагрев герметичной камеры осуществляют до температуры не ниже (450÷500)°С посредством кондуктивного и лучистого теплообмена с расплавом металла в тигле плавильной печи, нагретым до температуры не ниже 700°С, при этом патрубок герметичной камеры выполняют из титанового сплава с покрытием из нитрида титана на внешних боковых стенках, в процессе заполнения герметичной камеры расплавом в нее непрерывно подают порошок тугоплавкого соединения с одновременным механическим перемешиванием, а после заполнения герметичной камеры расплавом его дополнительно перемешивают в течение не менее 60 с.

Изобретение относится к области производства и испытаний химических элементов питания и может быть использовано для оценки их взрыво- и пожароопасности при эксплуатации. Пробивание корпуса цилиндрической батареи осуществляют по ее диаметру заостренным металлическим стержнем диаметром (4÷5) мм в манометрической бомбе и измеряют зависимость изменения давления от времени.

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и лакокрасочной промышленности. Способ получения потока капель с регулируемым дисперсным составом включает распыливание жидкости в газообразной среде центробежной форсункой, содержащей камеру закручивания, входные тангенциальные каналы и выходное сопло.

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов.

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и пьезоприводах.

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости.

Изобретение относится к снарядам, движущимся в водной среде. Снаряд содержит корпус, в котором размещен реактивный двигатель с центральным соплом, баллистический наконечник, выполненный в виде усеченного конуса, и кольцевое сопло для вдува газа в водную среду.

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера. Устройство включает размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической емкости с газопроницаемой верхней крышкой, соединенный патрубком с источником сжатого газа.

Изобретение относится к квантовой технике. Способ самоорганизации оптически активного ансамбля диамагнитных наночастиц электрон-ион заключается в создании объема когерентности, где на каждую молекулу резонансно по энергии воздействуют векторной суммой коллектива полей, состоящего из электрического и магнитного поля, индуцированного в молекулах упругим столкновением с уширяющими частицами, электрического и магнитного поля бигармонического излучения накачки на частотах ω1, ω2, электрического и магнитного поля релеевского рассеяния.

Изобретение относится к порошковой металлургии, в частности к способам взрывного прессования осесимметричных изделий из порошков. Порошковый материал помещают в осесимметричный контейнер с заглушками на его концах, на боковую поверхность контейнера наматывают детонирующий шнур.

Изобретение относится к технике распыления порошков в воздушной и газовой. Устройство для распыления порошков включает цилиндрический корпус, содержащий порошок, газогенератор с зарядом твердого топлива, систему аэрации порошка и сопло для истечения газопорошковой смеси.

Изобретение относится к области ракетной техники, в частности к ракетным двигателям активно-реактивных снарядов, запускаемых из ствола артиллерийского орудия, и заключается в способе повышения дальности полета активно-реактивного снаряда.

Изобретение относится к исследованию деформации капель аэродинамическими силами и может быть использовано в лабораторных установках для исследования физических и химических процессов. Стенд для исследования деформации капель аэродинамическими силами включает вертикально расположенную капельницу с капилляром, систему подачи обдувающего падающую каплю встречного потока воздуха и систему визуализации.
Изобретение относится к получению дисперсно-упрочненного нанокомпозитного материала на основе алюминия. Способ включает введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля.

Изобретение относится к области металлургии, в частности к получению легких сплавов на основе алюминия с повышенной прочностью. Способ заключается во введении в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля, причем лигатуру получают в виде цилиндрических рулонных элементов из алюминиевой фольги, на одну из поверхностей которой предварительно наносят электростатическим напылением модифицирующую добавку - порошок оксида алюминия, при содержании порошка оксида алюминия с размерами частиц 1-15 мкм в лигатуре 4,5-5,5 мас.

Изобретение относится к средству, обладающему противовоспалительным и анальгезирующим действием. Средство представляет собой комплекс флавоноидов, выделенный из надземной части растения Lychnis chalcedonica L.

Изобретение относится к фармацевтической промышленности, а именно к средству, обладающему гастропротекторным действием. Гастропротекторное средство, содержащее комплекс 4-х флавоноидов, выделенный из надземной части растения Lychnis chalcedonica L.
Изобретение относится к получению упрочненного нанокомпозиционного материала, который может быть использован в авиастроении и в автомобильной промышленности. Готовят лигатуру в виде компактированных стержней из равномерно перемешанной смеси порошка магния и нанопорошка нитрида алюминия с диаметром частиц в диапазоне 30÷80 нм.

Изобретение относится к области ракетной техники, в частности к конструкциям гибридных ракетных двигателей космического назначения. Гибридный ракетный двигатель содержит камеру сгорания с размещенным в ней зарядом твердого топлива с внутренним сквозным каналом и сопловой блок.
Наверх