Патенты принадлежащие Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") (RU)

Изобретение относится к области составов легкоплавких стекол, применяемых для литья микропроводов непосредственно из жидкой фазы, и может быть использовано при производстве сенсорных элементов и малобазных плавких предохранителей для электронной промышленности, приборостроения.
Изобретение относится к области гальванотехники и может быть использовано при получении покрытий с высокой микротвердостью для изделий авиационной промышленности, машиностроения и судостроения. Электролит для нанесения нанокристаллического композиционного покрытия никель-фосфор-вольфрам на детали из стали и медных сплавов содержит, г/л: сульфат никеля семиводный 40-45, гипофосфит натрия 5,0-5,5, вольфрамат натрия 115-130, цитрат натрия 280-290, хлорид аммония 26-27, вода - остальное.
Изобретение относится к области микрометаллургии, в частности, к получению покрытий системы Ni-Cr-Мо-TiB2, полученных методом гетерофазного переноса. Способ получения функционально-градиентного покрытия на основе системы Ni-Cr-Mo-TiB2 включает нанесение дисперсных частиц на поверхность изделия методом сверхзвукового холодного газодинамического напыления с использованием трех автономно работающих дозаторов, при этом в первый дозатор помещают порошок из чистого никеля Ni фракцией 20-40 мкм, во второй - порошок из сплава Ni40Cr18Mo42 фракцией 40-50 мкм, а в третий - наноразмерный порошок диборида титана TiB2 фракцией 80-120 нм, после чего осуществляют напыление функционально-градиентного покрытия с использованием компьютерной программы, согласно которой вначале из первого дозатора производят напыление адгезионного подслоя никеля, затем первый дозатор отключают и включают второй и третий дозаторы, причем из второго дозатора начинают подавать порошок Ni40Cr18Mo42 с максимальным 100% расходом, а из третьего - с минимальным расходом TiB2, затем по линейному закону количество порошка из второго дозатора уменьшают, а из третьего - увеличивают до получения покрытия состава TiB2.Техническим результатом является получение функционально-градиентного покрытия на основе системы Ni-Cr-Mo-TiB2 с высокой микротвердостью 28,8-30 ГПа, стойкостью к износу от 0,6·10-9 до 0,9·10-9 и коррозии менее 0,001 мм/год, адгезией 64-73 МПа.

Изобретение относится к области металлургии, в частности к газотермическому нанесению износостойких покрытий из композиционного порошка системы Ti/TiB2, сохраняющих свою эффективность при воздействии отрицательных температур.

Изобретение относится к металлургии, в частности к получению микрокристаллических лент, предназначенных для создания высокотемпературных сверхпроводников на ленточном носителе, из нержавеющей хромоникелевой стали аустенитного класса методом спиннингования расплава на одновалковой установке.

Изобретение относится к области получения многослойных материалов на основе стали и «мягких» металлов, таких как алюминий, медь, титан, и может быть использовано в машиностроении, приборостроении, энергомашиностроении, судостроении для увеличения ресурса работы механизмов за счет повышения износо- и коррозионной стойкости в агрессивных средах.

Изобретение относится к способу химико-термической обработки литой монокристаллической лопатки из никелевого сплава для газовых турбин. Способ включает термическую обработку и диффузионное алитирование, при этом в качестве термической обработки проводят гомогенизацию и закалку лопатки, после чего лопатку помещают в контейнер, засыпают ее шихтовой смесью, содержащей алюминий и никель, а последующее диффузионное алитирование лопатки проводят при температуре алитирования, соответствующей температуре старения сплава, под воздействием деформации сжатия вдоль оси лопатки со сжимающим напряжением σ=(0,3-0,7)⋅σT, где σ - сжимающее напряжение, МПа, σT - предел текучести, МПа, и со скоростью нагружения менее 10-3 %/с-1.
Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на детали, работающие под нагрузкой в агрессивных средах, для повышения надежности изделий и устройств и для увеличения срока их эксплуатации.

Изобретение относится к области машиностроения, а также к измерительной технике и служит для создания необходимых температурных условий для охлаждения или температурных испытаний агрегатов, образцов, узлов и крупногабаритных конструкций, изготовленных из конструкционных материалов.

Изобретение относится к исследованию прочностных свойств материалов. Сущность: осуществляют воздействие на образец испытываемого материала ударной волной, создаваемой взрывом заряда.

Изобретение относится к способу получения порошковых магнитотвердых сплавов на основе системы Fe-Cr-Co магнитотвердых сплавов. Исходную порошковую шихту, содержащую железо, хром и кобальт, готовят путем плавления в атомизаторе металлических слитков железа, хрома и кобальта и газового распыления расплава с получением сферического порошка.

Изобретение относится к способу и устройству для определения момента полного расплавления шихты в тигельной печи электросопротивления. Способ включает измерение температуры в ходе плавки с использованием в качестве параметра измерения сигнала ЭДС на выходе термопары, расположенной непосредственно у внутренней стенки тигля, при этом в процессе плавки фиксируют температуру, превышающую температуру плавления шихты, первое превышение из которых в начале плавки соответствует температуре, близкой к температуре стенки печи, а по началу второго превышения значения ЭДС определяют момент полного расплавления шихты.

Изобретение относится к получению композиционного материала на основе алмазных частиц. Способ включает формование заготовки из шихты, состоящей из алмазных частиц, пропитку заготовки расплавом кремния при температуре 1420-1500°С.

Изобретение относится к медицине и промышленной дефектоскопии и может быть использовано при изготовлении усиливающих рентгенолюминесцентных экранов. Сначала тербий равномерно наносят на поверхность частиц оксида гадолиния методом йодного транспорта путем термообработки смеси оксида гадолиния и йодида тербия в атмосфере инертного газа в течение 0,1-6 ч при температуре 500-1200°С и давлении 1-3 атм.

Изобретение относится к химической промышленности, станко-, машино- и двигателестроению и может быть использовано при изготовлении узлов трения, сопел пескоструйных аппаратов, деталей двигателей. Композиционный материал содержит, об %: 85-90 частиц алмаза и 10-15 фазы кристаллического карбида кремния.

Изобретение относится к сварочным материалам и может быть использовано для электродуговой сварки под флюсом сталей аустенитного класса проволоками аустенитно-ферритного класса. Флюс содержит компоненты в следующем соотношении, мас.%: электрокорунд 24,5-37, волластонит 27,5-35,0, плавиковый шпат 27,5-29,0, марганец металлический 0,5-4,0, ферросилиций 1,0-5,0, хром металлический 1,0-4,0, силикат натрия 7,0-7,5.

Использование: для обнаружения дефектов в сварных швах в процессе сварки. Сущность изобретения заключается в том, что устройство обнаружения дефектов в сварных швах в процессе сварки содержит измерительный канал, включающий установленный вблизи сварного шва преобразователь акустической эмиссии (АЭ), последовательно соединенные с его выходом предварительный усилитель, полосовой фильтр, а также аналого-цифровой преобразователь, амплитудный дискриминатор, блок оперативного запоминания акустических сигналов, блок вычисления взаимно корреляционных функций, блок фильтрации по уровню коэффициента корреляции, блок вычисления интегральных энергетических параметров по отдельным группам, дискриминатор браковочного уровня и компьютер с монитором отображения выходных данных, при этом устройство снабжено последовательно соединенными с амплитудным дискриминатором блоком формирования сигнала оптимальной длительности и блоком выбора эталонных сигналов, первый вход которого подключен к выходу блока формирования сигнала оптимальной длительности, второй вход подключен к выходу блока фильтрации по уровню коэффициента корреляции, а выходы соединены с соответствующими входами блока вычисления взаимно корреляционных функций, причем выход блока оперативного запоминания акустических сигналов подключен к входу блока вычисления интегральных энергетических параметров по отдельным группам.

Изобретение относится к области металлургии, а именно к листовому прокату толщиной до 50 мм из высокопрочной стали для судостроения, краностроения, транспортного и тяжелого машиностроения. Сталь содержит элементы при следующем соотношении, мас.%: углерод 0,08-0,10, кремний 0,15-0,35, марганец 1,20-1,35, хром 0,80-1,00, никель 1,85-2,00, медь 0,40-0,50, молибден 0,25-0,35, ванадий 0,07-0,09, алюминий 0,018-0,05, кальций 0,0001-0,005, барий 0,0001-0,005, сера не более 0,005, фосфор не более 0,010, азот не более 0,007, олово не более 0,010, висмут не более 0,010, железо остальное, при этом величина углеродного эквивалента СЕТ, рассчитываемая по выражению СЕТ=С+(Mn+Мо)/10+(Cu+Cr)/20+Ni/40, составляет не более 0,40%.

Изобретение может быть использовано для автоматической сварки на переменном токе под флюсом теплоустойчивых сталей перлитного класса, применяемых в атомном энергетическом машиностроении. Агломерированный флюс содержит компоненты в следующем соотношении, мас.%: обожженный магнезит 24,4-27,6; электрокорунд 19,8-22,0; синтетический шлак 14,3-17,0; плавиковый шпат 23,0-24,5; титаномагнетитовый концентрат 0,3-0,5; фтористый барий 0,6-1,0; хлористый калий 0,7-1,6; окись циркония 0,8-1,5; марганец металлический 2,0-2,2; ферротитан 0,7-0,9; ферросилиций 0,3-0,5; силикат натрия 7,0-7,5.

Изобретение может быть использовано для механизированной сварки в среде защитных газов и лазерно-дуговой сварки конструкций из низколегированных высокопрочных сталей с пределом текучести до 690 МПа. Порошковая проволока содержит, мас.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении с целью повышения функциональных характеристик механизмов, работающих в агрессивных средах, а также в изделиях нефтеперерабатывающей промышленности.

Изобретение относится к области металлургии, а именно к титановым α сплавам, предназначенным для использования в качестве конструкционного высокотехнологичного теплопроводного материала для энергетических силовых и теплообменных установок, авиационной и космической техники, длительно работающих при температурах от -100°С до 450°С.

Изобретение относится к способу получения композиционного материала для изготовления функциональных покрытий из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности.

Изобретение относится к области металлургии легированных сталей и сплавов, которые предназначены для использования в атомном энергетическом машиностроении при производстве основного оборудования АЭС, а именно для изготовления внутрикорпусной выгородки водо-водяных энергетических реакторов (ВВЭР) с ресурсом не менее 60-ти лет.

Изобретение относится к металлургии сплавов на основе титана, предназначенных для изготовления корпусных конструкций атомных энергетических установок с водяным теплоносителем. Высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным теплоносителем содержит, мас.

Изобретение относится к способу получения покрытий с интерметаллидной структурой из порошковых материалов с высокой адгезионной прочностью. Техническим результатом изобретения является получение интерметаллидного покрытия с регулируемой структурой.

Изобретение относится к производству поковок из штамповой стали типа 5ХНМ, предназначенных для изготовления штампов для горячей штамповки. В процессе выплавки стали в нее вводят кальций в количестве от 0,0005 до 0,003%.

Изобретение относится к металлургии, в частности к литейным свариваемым сплавам на основе титана, обладающим высокой коррозионной стойкостью против щелевой и питтинговой коррозии в агрессивных средах, и может быть использован для изготовления фасонных отливок типа корпусов насосов и арматуры, эксплуатируемых в элементах оборудования офшорной техники, ответственных сварно-литых конструкциях судостроения, химической промышленности.
Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии. Описан носитель катализатора, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой является пористым.
Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их поверхностных слоев.

Изобретение относится к области металлургии, а именно к составам аустенитных жаропрочных и коррозионно-стойких сталей, используемых в атомной энергетике, энергомашиностроении, машиностроении в установках, работающих длительное время при температурах 500÷650°С.

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной диэлектрической пленки с металлической лентой и подвергают совместному формованию, металлическую ленту подвергают предварительной термической обработке при температурах 300-380°С в течение 5-90 мин с целью создания состояния с положительной магнитострикцией насыщения за счет образования нанокристаллической структуры, при этом во время формования к ленте прикладывают растягивающее напряжение 1-100 МПа, а непосредственно после формования металлополимерный материал охлаждают от температуры формования до температуры на 10-20°С ниже комнатной, выдерживают 10-60 минут и после выдержки одновременно снимается внешнее растягивающее напряжение, приложенное к ленте, и производится нагрев материала до комнатной температуры.

Изобретение относится к износостойким сплавам для высоконагруженных узлов трения. Сплав включает связующую матрицу эвтектического состава в количестве от 24,8 до 26,8 мас.% от массы сплава и карбонитрид титана TiC0,5N0,5.

Изобретение относится к области цветной металлургии, в частности к свариваемым литейным сплавам на основе титана, и предназначено для изготовления фасонных отливок, используемых в ответственных сварно-литых конструкциях энергомашиностроения при температуре до 450°С.

Изобретение относится к области гальванотехники и может быть использовано для микродугового оксидирования (МДО) сварочной проволоки из титановых сплавов, применяемой при изготовлении изделий судовой арматуры и механизмов, изделий химического машиностроения и др.

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в высокоскоростном дезинтеграторе.
Наверх