Патенты принадлежащие Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" (RU)

Изобретение относится к дифференциальным механизмам распределения мощности. Механизм распределения мощности содержит связанный входным звеном с двигателем вспомогательный редуктор, выходное звено которого связано параллельно с управляемым дифференциалом и зубчатым планетарным редуктором, выходное звено которого связано с одной из полуосей.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении защищенности сервера услуг.

Изобретение относится к области радиотехники и предназначено для применения в помехозащищенных системах радиосвязи для передачи дискретных сигналов. Техническим результатом изобретения является повышение помехозащищенности радиосигнала путем совмещения свойств сигналов, полученных в негармоническом базисе вейвлет-функций различного порядка и сигналов однополосной модуляции, проявляющихся в асинхронизме передачи в радиолинии, что реализуется на основе технологий программной перестройки рабочей частоты (ППРЧ) с изменяемыми параметрами модуляции.

Использование: способ относится к области синхронизации в цифровых сетях, в частности к способам, реализуемым в цифровых сетях, состоящих из ведущего и ведомого объектов, снабженных часами, между которыми осуществляют передачу пакетов информации по каналам связи, в том числе синхронизирующих пакетов.

Изобретение относится к области радиотехники и предназначено для применения в системах радиосвязи (СРС) с программной перестройкой рабочей частоты (ППРЧ), использующих помехозащищенные радиосигналы. Техническим результатом изобретения является повышение помехозащищенности сигнала.

Изобретение может быть использовано в радиолокационных и радионавигационных системах для определения местоположения объектов. Техническим результатом изобретения является повышение точности определения пространственных координат цели и скорости их изменения.

Изобретение относится к ближней радио и гидролокации и может использоваться в системах автономного управления движением взаимодействующих объектов для вычисления на ограниченных расстояниях параметров движения объекта - путевой скорости, курсового параметра и угла встречи движущегося или неподвижного локатора с движущимся объектом.

Изобретение относится к области радиолокации и предназначено для определения местоположения радиолокационной станции (РЛС) секторного обзора. Техническим результатом изобретения является расширение функциональных возможностей путем обеспечения определения дальности до РЛС, имеющей диаграмму направленности антенны (ДНА), сканирующую в заданном секторе.

Изобретение относится к области радиопеленгации, в частности, к определению пеленга источника радиоизлучения (ИРИ) системой с вращающимися антеннами, не имеющими сильно выраженной направленности, путем последовательного изменения положения диаграмм направленности антенн при вращении их в плоскости пеленгации.

Изобретение относится к области технологий компьютерного тестирования при обучении и подготовке специалистов для различных отраслей знаний и специальностей, а также при проведении социальных и психологических опросов.

Изобретение относится к области радиолокации и предназначено для определения местоположения работающей радиолокационной станции (РЛС), имеющей сканирующую направленную антенну. Техническим результатом изобретения является расширение функциональных возможностей способа путем обеспечения определения местоположения как РЛС кругового, так и секторного обзора относительно пассивного многолучевого пеленгатора (ПМП) при отсутствии на местности радиоконтрастных объектов при одновременном повышении дальности действия системы.

Изобретение относится к области радиолокации и предназначено для определения местоположения работающей радиолокационной станции (РЛС) кругового обзора, например судовой навигационной РЛС. Технический результат изобретения заключается в расширении функциональных возможностей способа путем определения направления на обзорную РЛС и дальности до нее в отсутствии на местности радиоконтрастных отражающих объектов, при одновременном повышении достоверности результатов измерений и дальности измерений при использовании антенны с широкой диаграммой направленности, что позволяет реализовать способ в малогабаритных системах.

Изобретение относится к области теплообмена между газовыми потоками. Способ изготовления пластинчатого щелевого теплообменника включает сборку из пластин щелевых каналов, герметизацию которых производят путем сварки образующих щелевой канал пластин попарно между собой, сборку щелевых каналов в пакет и укладку пакета щелевых каналов в корпус, причем щелевые каналы изготавливают в соответствии с соотношением: , гдеL – длина щелевого канала,b – ширина щелевого канала,r – размер щелевого канала в поперечном направлении,CV – теплоемкость газа, – коэффициент теплопроводности газа,J – поток газа,а после сварки щелевых каналов в их торцы герметично вваривают входные и выходные трубопроводы, которые соединяют, образуя входной и выходной тракт высокотемпературного газового потока, при этом расстояния между соседними щелевыми каналами выбирают равными размеру щелевого канала в поперечном направлении r, после чего пакет щелевых каналов герметично вваривают в толстостенный внешний корпус, а в противоположные торцы внешнего корпуса вваривают входной и выходной трубопроводы тракта низкотемпературного газового потока, причем расстояние между боковыми стенками соседних щелевых каналов и между внешним корпусом и соседними боковыми пластинами щелевых каналов выбирают равным размеру щелевого канала в поперечном направлении r.

Изобретение относится к области радиотехники и может быть использовано в многопозиционных радиотехнических системах, установленных на летательных аппаратах, для определения координат источников импульсного радиоизлучения (ИРИ).

Изобретение относится к радиотехнике, а именно к способам определения местоположения (ОМП) источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения ИРИ.

Изобретение относится к прицельным системам с повышенной безопасностью пользователя, используемым для наблюдения и стрельбы, устанавливаемым на огнестрельном оружии различного типа: пистолетах, автоматах, и может быть оснащено оптическим устройством.

Изобретение относится к электротехнике, в частности к способам определения местоположения неоднородностей двухпроводных линий, и предназначено для использования с импульсными приборами (рефлектометрами).

Изобретение относится к мультиагентным робототехническим системам, предназначенным для дистанционной работы в труднодоступных и опасных для присутствия человека местах в различных природных средах: наземной, воздушной, надводной и подводной.

Изобретение относится к робототехнике, в частности к сферическим роботам для научно-исследовательских и охранно-мониторинговых целей. Шарообразный робот содержит самоходное шасси со сферической оболочкой и несущей рамой, размещенной в оболочке посредством опорно-поддерживающих тел качения, установленный на раме движитель маятникового типа с использованием пары разнесенных влево и вправо на одинаковые расстояния от продольной вертикальной плоскости оболочки, и сцепленных с внутренней поверхностью оболочки, дифференциальный реверсивный привод тяговых элементов маятникового типа, противовес сцепленных для смещения центра масс, автономный источник энергии и систему управления шасси.

Изобретение относится к области радиолокации и предназначено для определения местоположения работающей радиолокационной станции (РЛС), имеющей сканирующую направленную антенну. Достигаемый технический результат – расширение функциональных возможностей путем обеспечения определения направления на сканирующую РЛС и дальности до нее, при одновременном повышении достоверности результатов измерений.
Наверх