Алмаз (C01B31/06)

Способ получения трехмерных углеродных структур фотонного типа пиролизом этанола при повышенном давлении // 2659277
Изобретение относится к области углеродных материалов и может быть использовано в электронной промышленности. Трехмерные углеродные структуры фотонного типа получают пиролизом этанола при температуре 500-800 °C и давлении 1000-4000 атм в течение 72 ч в присутствии платинового катализатора с добавлением 2% об.

Способ разделения кластеров частиц алмаза // 2656476
Изобретение может быть использовано при изготовлении медицинских приборов, смазочных материалов, гальванических и полированных покрытий, абразивов. Кластеры частиц алмаза, диаметр которых не превышает 1,0 мм, разделяют на отдельные частицы и (или) на кластеры меньших размеров, содержащие меньшее количество алмазных частиц, для чего сначала получают реакционную смесь перемешиванием кластеров частиц алмаза по меньшей мере с одним ненасыщенным органическим соединением, находящимся в жидком агрегатном состоянии, например, 1-ундеценом, или с раствором по меньшей мере одного ненасыщенного органического соединения по меньшей мере в одном растворителе.

Способ синтеза наноалмазов // 2650971
Изобретение относится к синтезу наноалмазов для использования в элементах оптической памяти для квантовых компьютеров высокой производительности. Способ включает подготовку углеродсодержащей смеси, ее размещение в камере высокого давления, инициирование в углеродсодержащей смеси интенсивной ударной волны, фильтрацию и сепарацию продуктов синтеза, при этом в качестве углеродсодержащей смеси выбирают смесь на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2 с числом углеродных атомов 16 и выше, нагревают ее до температуры выше 300 K, пропускают через нее метан под давлением выше 0,1 МПа и формируют в углеродсодержащей смеси импульсный электрический разряд.

Способ получения легированного монокристалла алмаза // 2640788
Изобретение относится к получению монокристаллов алмазов, в частности, легированных азотом и фосфором, при высоких давлениях и температурах, которые могут быть использованы в устройствах электроники. Способ выращивания легированных азотом и фосфором монокристаллов алмаза в области высоких давлений 5,5-6,0 ГПа и температур 1600-1750°С осуществляют на затравочном кристалле, который предварительно запрессовывают в подложке из хлорида цезия и отделяют от источника углерода, азота и фосфора металлом-растворителем, в качестве которого используют сплав железа, алюминия и углерода.
Способ очистки алмазов динамического синтеза // 2632838
Изобретение относится к технологии получения синтетических алмазов методом динамического детонационного синтеза и может быть использовано для очистки и извлечения высокочистого алмаза из первичных продуктов.

Способ получения кристаллических алмазных частиц // 2628617
Изобретение относится к нанотехнологии алмазных частиц, необходимых для финишной шлифовки и полировки различных изделий и для создания биометок. Способ получения кристаллических алмазных частиц включает добавление к порошку наноалмазов, полученных детонационным синтезом, циклоалкана (циклического насыщенного углеводорода) или многоосновного спирта в количестве 5-85 мас.
Способ бесконтактной обработки поверхности алмазов // 2620392
Изобретение относится к технологии обработки алмазов, а именно к методам придания им заданной геометрической формы, и востребовано в промышленности для производства электроники. Способ бесконтактной обработки поверхности алмаза включает нагрев алмаза до температуры чуть ниже температуры графитизации алмаза с последующим бесконтактным воздействием на локальный участок поверхности алмаза точечным источником энергии, с помощью которого повышают температуру поверхности алмаза на локальном участке выше температуры графитизации.

Способ извлечения ультрадисперсных алмазов из импактитов // 2616698
Изобретение относится к области обогащения полезных ископаемых, в частности к извлечению ультрадисперсных алмазов из сырья импактного происхождения, и может быть использовано при переработке кимберлитовых руд.

Способ ударного сжатия тел малой плотности, снаряд и реактор для его осуществления // 2610865
Изобретение относится к области средств получения высоких динамических давлений и температур и может быть использовано для проведения химических реакций, изменения кристаллической структуры твердых тел при высоком давлении и температуре, в частности для получения искусственных алмазов (алмазного порошка), для сжатия DT-льда с целью получения нейтронного источника, для осуществления инерциального термоядерного синтеза.

Алмазоуглеродное вещество и способ его получения // 2604846
Изобретение относится к получению высокочистых активных алмазоуглеродных материалов, которые могут быть использованы при суперфинишном полировании, в гальванике и медицине. Сначала исходное алмазоуглеродное вещество в виде суспензии или порошка обрабатывают смесью водных растворов азотной кислоты с концентрацией 30-40 мас.% и фтористоводородной кислоты с концентрацией 20-30 мас.% в течение 72-74 ч при комнатной температуре, а затем водным раствором соляной кислоты с концентрацией 15-20 мас.% в течение 2,5-3 ч при температуре кипения реакционной смеси.

Способ очистки детонационных нанодисперсных алмазов // 2599665
Изобретение относится к физико-технологическим процессам обработки алмазосодержащих суспензий. Твердую углеродную массу, выделенную после завершения детонационного синтеза, обрабатывают в автоклаве водным раствором нитрата аммония с добавками азотной кислоты при температуре 200-260°С до прекращения газовыделения, при этом концентрация твердой фазы в суспензии составляет 5%, на 1 вес.ч.

Способ обработки поверхности алмаза // 2593641
Изобретение относится к способам обработки поверхности алмаза для его использования в электронной технике СВЧ. Способ включает взаимное расположение в одной плоскости исходной поверхности алмаза и металлической поверхности из стали, обеспечение непосредственного контакта упомянутых поверхностей, термическую обработку исходной поверхности алмаза на заданную глубину, обеспечивающую заданную конечную поверхность алмаза, при этом предусматривающую нагрев упомянутых поверхностей в инертной среде, с заданной скоростью, вблизи температуры образования эвтектического сплава железо - углерод, выдержку при этой температуре и естественное охлаждение, при этом металлическую поверхность из стали берут с содержанием углерода 3,9-4,1 мас.

Химический способ получения искусственных алмазов // 2586140
Изобретение относится к неорганическому синтезу искусственных алмазов размером до 150 мкм, которые могут найти промышленное применение в производстве абразивов и алмазных смазок, буровой технике. Синтез алмазов осуществляют в расплавленной металлической матрице при непосредственном взаимодействии углеродсодержащей добавки, содержащейся в концентрациях от 2 до 10 мас.% в расплаве хлоридов и/или фторидов щелочных металлов, с расплавленными металлами, такими как алюминий, цинк, магний, олово, свинец, а также их сплавами в течение 1-5 ч при температуре 700-900°C в атмосфере воздуха и последующем охлаждении и/или термообработке, при этом в качестве углеродсодержащей добавки используют карбиды металлов или неметаллов или твердые органические вещества, относящиеся к классам углеводородов, или углеводов, или карбоновых кислот.

Способ увеличения размеров алмазов // 2585634
Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле. Способ включает осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, при этом затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, после чего нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана.
Поликристаллический алмаз // 2581397
Изобретение относится к поликристаллическому алмазу для использования в различных инструментах. Поликристаллический алмаз характеризуется тем, что содержит алмазные спеченные зерна, имеющие средний диаметр зерна более 50 нм и менее 2500 нм, чистоту 99% или более и диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,9) или менее, причем поликристаллический алмаз обладает пластинчатой структурой и имеет твердость 100 ГПа или более.

Способ обработки монокристаллического cvd-алмаза и полученный продукт // 2580916
Изобретение относится к технологии обработки монокристаллического CVD-алмазного материала. Описан способ введения NV-центров в монокристаллический CVD-алмазный материал.

Процесс производства синтетического монокристаллического алмазного материала // 2580743
Изобретение относится к процессу синтеза множества синтетических монокристаллических алмазов. Способ включает формирование множества затравочных подушек, каждая из которых содержит множество затравочных монокристаллов алмаза, прикрепленных к инертному держателю или внедренных в него, загрузку источника углерода, металлического катализатора и множества затравочных подушек в капсулу, при этом, по меньшей мере, часть источника углерода располагается на расстоянии менее 0,1 мм от затравочных монокристаллов алмаза, загрузку капсулы в пресс высокого давления и высокой температуры (ВДВТ) и подвергание капсулы циклу ВДВТ-роста для выращивания монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза, причем цикл ВДВТ-роста включает инициирование ВДВТ-роста монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза путем увеличения давления и температуры, поддержание ВДВТ-роста монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза посредством управляемого давлением процесса роста путем управления и поддержания давления и температуры и прекращение ВДВТ-роста монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза путем уменьшения давления и температуры, при этом множество затравочных монокристаллов алмаза остаются прикрепленными к инертным держателям или внедренными в них во время цикла ВДВТ-роста.
Способ изготовления струеформирующих сопел // 2579598
Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов.

Способ обработки поверхности алмаза // 2579398
Изобретение относится к технологии обработки алмаза и может быть использовано в микроэлектронной технике СВЧ. Способ обработки поверхности алмаза включает взаимное расположение в одной плоскости исходной поверхности алмаза и металлической поверхности из стали, обеспечение непосредственного контакта упомянутых поверхностей, термическую обработку исходной поверхности алмаза на заданную глубину, обеспечивающую заданную конечную поверхность алмаза, при этом предусматривающую нагрев упомянутых поверхностей до температуры образования эвтектического сплава железо - углерод, выдержку при этой температуре и естественное охлаждение, причем металлическую поверхность из стали берут с содержанием углерода 3,9-4,1 мас.

Способ получения кристаллических алмазных частиц // 2576055
Изобретение относится к нанотехнологиям материалов. Способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом в концентрации от 22 мас.

Способ получения искусственных алмазов // 2575713
Изобретение относится к получению искусственного алмаза, который может быть использован в тяжелой промышленности. Перед загрузкой в пресс фуллерен С60 выдерживают в течение 30 минут в потоке водорода, затем помещают в контейнер из пирофиллита один или вместе с поли[гидридо(Н)карбином] в соотношении 1:1, а затем нагружают квазигидростатическим давлением 3-5 ГПа при температуре 973-1173 К.

Сорбент, представляющий собой наноалмазный материал (варианты), способы получения и использования. // 2569510
Группа изобретений относится к сорбентам на основе наноалмазов, которые могут быть использованы для иммобилизации или удаления вирусов, специфических антител, иммуносорбции, в диагностических целях, для дезактивации и удаления вирусов из внешней среды.

Способ получения искусственных алмазов из графита // 2560380
Изобретение относится к технологии получения алмазов. Искусственные алмазы получают из графита на подложке в присутствии электродов путем расположения графита на подложке, являющейся электродом с отрицательным зарядом, расположенной в кварцевой пробирке, и при нагреве до 1000°C при атмосферном давлении в радиационной печи.

Способ получения композитного материала на основе углерода и композитный материал // 2556673
Изобретении может быть использовано в ракетно-космической и авиационной отраслях, при металлообработке, обработке природных и искусственных камней, твердых и сверхтвердых материалов. Способ получения композитного материала включает воздействие на смесь углеродсодержащего материала, наполнителя и серосодержащего соединения давлением 0,1-20 ГПа и температурой 600-2000оС.

Алмазный поликристаллический композиционный материал с дисперсно-упрочненной добавкой // 2550394
Изобретение относится к области получения поликристаллических материалов, которые могут быть использованы, преимущественно, для изготовления бурового и правящего инструмента. Алмазный поликристаллический композиционный материал с дисперсно-упрочненной добавкой содержит оболочку толщиной 0,02-0,15 мм из тугоплавкого металла, в которой размещены порошки алмаза и металлы, при этом в качестве металлов используют никель, кобальт, в качестве дисперсно-упрочняющей добавки - нанопорошок карбида вольфрама при следующем соотношении компонентов, масс.

Способ получения сверхтвердого композиционного материала // 2547485
Изобретение может быть использовано для изготовления элементов аппаратов высокого давления, материалов с высокой износостойкостью, режущих инструментов, инструментов для бурения. Готовят исходную смесь, содержащую, масс.

Способ получения кубических нанокристаллов алмаза // 2547009
Изобретение относится к нанотехнологии и может быть использовано для маркирования молекул, квантовой обработки информации, магнитометрии и синтеза алмаза химическим осаждением из газовой фазы. Порошок кристаллического алмаза с максимальным размером частиц от 2 мкм до 1 мм измельчают азотной струей в течение 1-5 ч с давлением измельчения 500 кПа с получением тонкого порошка, который затем измельчают в планетарной мельнице с шарами из карбида вольфрама.

Высокотвердый углеродный материал и способ его получения // 2543891
Изобретение предназначено для аэрокосмической отрасли, оборонной промышленности и обработки твёрдых и сверхтвёрдых материалов. На молекулярный фуллерен С60 или фуллеренсодержащую сажу с добавкой серосодержащего соединения воздействуют давлением от 0,2 до 12 ГПа и температурой от 0 до 2000 oС.

Синтетический радиоактивный наноалмаз и способ его получения // 2543184
Изобретение может быть использовано в химии и медицине. Синтетический радиоактивный наноалмаз состоит из частиц со средним диаметром не более 100 нм и содержит металлсодержащие радиоактивные примеси в количестве 0,04-1,24% мас., с мощностью дозы γ-излучения менее 180 мкЗв/ч, мощностью дозы γ+β-излучения менее 720 мкЗв/ч.

Конъюгат наноалмаза с пирофосфатазой и способ его получения // 2542411
Изобретение относится к области фармации и медицины и касается конъюгата наноалмаза с пирофосфатазой для доставки пирофосфатазы в организм и способа его получения. Конъюгат представляет собой частицы наноалмаза размером 2-10 нм с иммобилизованной на них посредством линкера, содержащего амино- или амидные группы, пирофосфатазой.

Способ получения фантазийного бледно-синего или фантазийного бледного сине-зеленого монокристаллического cvd-алмаза и полученный продукт // 2540624
Изобретение относится к технологии производства окрашенных алмазных материалов, которые могут найти применение в качестве драгоценных камней или режущих инструментов. Способ включает этапы выращивания монокристаллического алмазного материала по CVD-технологии, причем алмазный материал имеет концентрацию одиночных замещающих атомов азота [Ns 0] менее 1 ppm, исходный CVD-алмазный материал является бесцветным, или если не бесцветным, то по градации цвета коричневым или желтым, и если является коричневым по градации цвета, то имеет уровень G (коричневый) градации цвета или лучше для алмазного камня массой 0,5 карата с круглой бриллиантовой огранкой, и если является желтым по градации цвета, то имеет уровень Т (желтый) градации цвета или лучше для алмазного камня массой 0,5 карата с круглой бриллиантовой огранкой, и облучение исходного CVD-алмазного материала электронами, чтобы ввести изолированные вакансии в алмазный материал так, что произведение общей концентрации вакансий × длину пути, [Vт]×L, в облученном алмазном материале на этом этапе или после дополнительной обработки после облучения, включающей отжиг облученного алмазного материала при температуре по меньшей мере 300°С и не более 600°С, составляет по меньшей мере 0,072 ppm·см и не более 0,36 ppm·см.
Меченные тритием наноалмазы и способ их получения // 2538862
Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,6 мг, равномерное нанесение полученной суспензии на стенки сосуда, содержащего установленную с возможностью подключения электрического тока вольфрамовую нить для активации трития, с последующей лиофилизацией и удалением воздуха.

Способ определения биологической неэквивалентности наноалмазов // 2538611
Изобретение относится к области фармакологии, биофармации и фармацевтики и касается способа определения биологической неэквивалентности образцов наноалмазов путем сравнительного определения влияния образцов наноалмаза на мембранный потенциал митохондрий животных.

Алмазный материал // 2537857
Изобретения могут быть использованы в химической и ювелирной промышленности. Алмазный материал, легированный азотом, полученный по технологии CVD, или представляющий собой монокристалл или драгоценный камень, проявляет различие абсорбционных характеристик после воздействия излучения с энергией по меньшей мере 5,5 эВ, в частности УФ-излучения, и термической обработки при температуре 798 К.
Способ получения синтетических алмазов // 2531311
Изобретение относится к химической промышленности и может быть использовано для получения технических или ювелирных изделий. Ионы углерода с разноименными зарядами взаимодействуют между собой в течение 20-30 часов при температуре 850-950 °C в высокочастотном электрополе в диапазоне частот 40-80 кГц в присутствии железа в качестве катализатора.
Способ получения сверхтвердого композиционного материала // 2523477
Изобретение может быть использовано при изготовлении инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Готовят исходную композицию, состоящую из следующих компонентов, мас.%: фуллерены С-60 или С-70 - 30-50; теплопроводящий компонент - 10-60; связующая добавка - остальное.

Способ определения угла разориентированности кристаллитов алмаза в композите алмаза // 2522596
Изобретение может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики и биомедицины. Способ определения угла разориентированности кристаллитов алмаза в композите алмаза включает помещение композита алмаза в резонатор спектрометра электронного парамагнитного резонанса (ЭПР), измерение спектров ЭПР азотно-вакансионного NV-дефекта в композите алмаза при разных ориентациях композита алмаза относительного внешнего магнитного поля, сравнение полученных зависимостей линий ЭПР с рассчитанными положениями линий ЭПР NV-дефекта в монокристалле алмаза в магнитном поле, определяемыми расчетным путем.
Поликристаллический алмаз // 2522028
Изобретение относится к получению поликристаллического алмаза, который может быть использован при изготовлении водоструйных сопел, гравировальных резцов для глубокой печати, скрайберов, алмазных режущих инструментов, скрайбирующих роликов.

Способ получения наноалмазов при пиролизе метана в электрическом поле // 2521581
Изобретение может быть использовано в медицине при производстве препаратов для послеоперационной поддерживающей терапии. Проводят термическое разложение метана в герметичной камере на подложках из кремния или никеля при давлении 10-30 Торр и температуре 1050-1150 °С.

Устройство для получения алмазов // 2514869
Изобретение относится к области взрывных технологий синтеза материалов, в частности алмазов. Устройство включает прочный сосуд 1 с герметичной крышкой 3, размещенную внутри сосуда смесь взрывчатого вещества с высокой удельной энергией и графитом или углеродосодержащим взрывчатым веществом с отрицательным кислородным балансом, инициирующее устройство 5, неразрушаемую цилиндрическую преграду 6 в виде трубы, размещенную соосно сосуду 1, внутри него, при этом смесь графита и взрывчатого вещества и устройство инициирования 5 помещены в центре преграды 6.

Способ селективной доочистки наноалмаза // 2506095
Настоящее изобретение относится к области фармакологии, наноматериалов и нанотехнологии и касается способа селективной доочистки наноалмазов от примесей нитрат-ионов и соединений, содержащих серу, которые могут использоваться в фармацевтике, заключающегося в том, что очищенный от шихты порошок наноалмаза обрабатывают водным раствором щелочи с концентрацией 0,01-1 моль/л при 20-100°C с последующей декантацией или центрифугированием образующейся суспензии, промывкой полученного осадка водой с применением ультразвуковой обработки, его отделением и сушкой.

Способ избирательного дробления алмазов // 2492138
Изобретение относится к дроблению алмазов при изготовлении алмазного породоразрушающего инструмента. .
Способ получения сверхтвердого композиционного материала // 2491987
Изобретение относится к получению сверхтвердого композиционного материала на основе углерода, который может быть использован для изготовления инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности.
Способ получения алмазов с полупроводниковыми свойствами // 2484189
Изобретение относится к области неорганической химии, а именно к получению синтетических алмазов, легированных бором, которые могут найти применение в электронной промышленности для изготовления полупроводниковых устройств.

Способ получения синтетических алмазов и установка для осуществления способа // 2484016
Изобретение относится к химической и ювелирной промышленности. .

Способ получения углеродосодержащих наночастиц // 2484014
Изобретение относится к синтезу алмазных наночастиц, которые могут быть использованы в катализаторах, автомобильных маслах и фармакологии. .

Способ промышленного получения алмазов и других твердофазных наноструктурированных графитовых образований, устройство и заряд для их получения // 2483023
Изобретение относится к детонационному синтезу наноструктурированных графитовых образований, в частности алмазов, предназначенных для использования в химической, электрохимической промышленности, в фармакологии, при проведении биомедицинских исследований, для получения катализаторов роста, алмазных и алмазоподобных пленок, в качестве основы оптических затворов - ограничителей интенсивности лазерного излучения, в качестве присадок для ракетных топлив, смазочного материала; наномодификатора для бетона, антифрикционной добавки к конструкционным материалам и смазкам, элемента холодных катодов, элемента нелинейно-оптических систем, в том числе широко полостных ограничителей лазерного излучения.

Способ синтеза алмазов // 2482060
Изобретение относится к химической промышленности и может быть использовано для изготовления технических или ювелирных изделий. .

Способ синтеза алмазов, алмазных поликристаллов // 2476376
Изобретение относится к производству алмазов и алмазных поликристаллов. .

Способ получения алмаза, легированного фосфором (варианты) // 2476375
Изобретение относится к получению алмазов, легированных фосфором, при высоких давлениях и температурах. .
 
.
Наверх