Способ создания легированных областей полупроводниковых приборов и интегральных микросхем

 

(19)RU(11)1083842(13)C(51)  МПК 6    H01L21/265Статус: по данным на 27.12.2012 - прекратил действиеПошлина: учтена за 3 год с 18.06.1995 по 17.06.1996

(54) СПОСОБ СОЗДАНИЯ ЛЕГИРОВАННЫХ ОБЛАСТЕЙ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ И ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных микросхем. Известен способ ионного легирования бором областей полупроводниковых приборов в чистый кремний или кремний, защищенный окисной пленкой, где при ионном легировании бором областей полупроводниковых приборов энергиями 50-150 кэВ и дозами свыше 1,25 1014 ион/см2 (20 мкКул/см2) период кристаллической решетки кремния увеличивается за счет атомов примеси и выбитых в результате бомбардировки атомов кремния, которые находятся в междоузлиях, "распирая" решетку. Последующие термические обработки переводят междоузельные атомы в узлы кристаллической решетки. При этом примесь становится электрически активной. Так как атомный радиус бора меньше атомного радиуса кремния, то кристаллическая решетка стягивается, что приводит к появлению дефектов в областях легирования. Наиболее близким к предлагаемому техническому решению является способ создания легированных областей полупроводниковых приборов и интегральных микросхем путем окисления кремниевых пластин, вытравливания окон в маскирующем окисле, создания окисла в вытравленных окнах и ионной имплантации бора с последующей его разгонкой. Окисная пленка в данном случае толщиной 6000-7000 , энергия легирования 200-300 кэВ. Недостатком этого способа является то, что при подборе соотношений энергии легирования и толщины окисла из указанных интервалов максимум концентрации имплантированного бора может лежать в кремнии, что приведет к появлению дефектов в областях легирования, особенно при больших дозах примеси, ухудшающих электрические параметры полупроводниковых приборов. Цель изобретения - улучшение электрических характеристик полупроводниковых приборов и интегральных микросхем путем исключения дефектов в областях, легированных бором, особенно при больших его дозах. Поставленная цель достигается тем, что в способе создания легированных областей полупроводниковых приборов и интегральных микросхем путем окисления кремниевых пластин, вытравливания окон в маскирующем окисле, создания окисла в вытравленных окнах и ионной имплантации бора с последующей его разгонкой, выращивают окисную пленку в вытравленных окнах толщиной, определяемой соотношением: d = КЕ, где d - толщина окисла в нанометрах, нм; Е - энергия ионного легирования в килоэлектронвольтах, кэВ, К - коэффициент, равный (3,6 - 4,0) нм/кэВ, после чего проводят ионную имплантацию бора в окисел энергией из диапазона 2-100 кэВ, соответствующей выбранной толщине окисла, а затем переводят разгонкой бор из окисла в кремний. В связи с тем, что энергия ионов бора, достигающих кремний за счет дисперсионной составляющей ионного пучка, низка из-за торможения ионов в окисле, а при последующих термических обработках р-области формируются диффузией как этих ионов, так и примеси из окисла, дефекты в области легирования не возникают. В результате повышаются пробивные напряжения и резко снижаются утечки р-n-переходов. Коэффициент К подобран экспериментальным путем. Экспериментальные данные, использованные для определения нижней границы коэффициента К, приведены в таблице. При значениях К меньше 3,6 нм/кэВ в легированных областях возможно возникновения дефектов. Выбор значений К больше 4,0 нм/кэВ нежелателен, так как хотя дефекты в областях легирования отсутствуют, но из-за увеличения толщины окисла максимум концентрации примеси после ионной имплантации будет удален от границы раздела окисел-кремний, что приведет к необходимости увеличения дозы имплантируемой примеси. Так, если для получения поверхностного сопротивления легируемой области р-типа 200 Ом/ при К равном 4,0 нм/кэВ доза имплантируемой примеси не превышает 330 мкКул/см2, то при К более 4,0 нм/кэВ доза увеличивается и при К равным 4,6 нм/кэВ составит 520 мкКул/см2, а при К более 5,0 нм/кэВ область р-типа не образуется, так как окисел становится маскирующим. Для создания бездефектных легированных областей необходимую толщину окисла можно получить, выбирая любое значение коэффициента К из указанных пределов, причем пределы коэффициента К предусматривают технологический разброс получаемых толщин окисла. Например, для энергии легирования 25 кэВ толщина окисла, согласно формуле d=КЕ может лежать в пределах 90-100 нм; для энергии 100 кэВ толщина окисла - в пределах 360-400 нм. Создание бездефектных легированных областей возможно при любых энергиях легирования путем подбора соответствующих толщин окисла. Однако, наиболее оптимальным является диапазон энергий 20-100 кэВ, так как при легировании энергиями ниже 20 кэВ уменьшается плотность ионного пучка снижается производительность ионно-лучевых установок, а применение энергии легирования более 100 кэВ приводит к увеличению толщины окисла выше 400 нм, что затрудняет воспроизводимое с точностью, определяемой коэффициентом К = (3,6-4,0) нм/кэВ, получение толщин окисла. На чертеже изображена легированная область, сформированная по предлагаемому способу. Полупроводниковая подложка 1, в которой создана легированная область р-типа, сформирован слой окисла 2 для маскирования при ионном легировании слой окисла 3, выращенный в вытравленных окнах маскирующего слоя, область легирования 4 для создания полупроводниковых приборов и интегральных микросхем. После создания маскирующего слоя окисла 2 с помощью фотолитографии в нем вытравливают окна. Затем в вытравленных окнах выращивают окисел 3 и проводят ионную имплантацию бора с такой энергией, чтобы максимум концентрации примеси находился в окисле 3 вблизи границы окисел-кремний. В этом случае область р-типа создают за счет ионов бора, имеющих энергию выше средней энергии пучка, т.е. за счет дисперсионной составляющей ионного пучка и за счет перераспределения примеси бора из окисла 3 в кремний при последующих термообработках. В этом случае количество дефектов в кремний снижается, а все преимущества создания полупроводниковых областей ионным легированием перед другими способами легирования сохраняются. Создание базовых областей р-типа, легированным бором по предлагаемому способу, в частности, может быть осуществлено следующим образом. В маскирующем слое окисла толщиной 700-800 нм вытравливают окна для создания базовых областей. Кремний в окнах окисляют до толщины окисла 370-400 нм при температуре 1000 1оС в сухом кислороде в течение 35 мин при расходе кислорода 2 л/мин, в парах деионизированной воды - 32 мин, в сухом кислороде - 35 мин. Затем проводят ионную имплантацию бора дозой 330 мкКул/см2 с энергией 100 кэВ, после чего пластины подвергают термической обработке при температуре 1120 1оС в сухом кислороде - 10 мин при расходе кислорода 1 л/мин, в парах деионизированной воды - 25 мин, в сухом кислороде - 60 мин. Возможны и другие режимы отжигов как в окислительной среде, так и в нейтральной, при этом время и температура отжига определяются требуемой поверхностной концентрацией и глубиной залегания перехода. Дефекты, возникающие при ионном легировании, выявляли путем обработки пластин в травителе следующего состава:
Сr2O3 - 25г, НF - 60 мл, Н2О - 50 мл. Плотность дефектов в областях, легированных бором, определяли по предлагаемому способу и по способу легирования бором областей кремния, не защищенных окисной пленкой, дозой 110 мкКул/см2 с энергией 100 кэВ. Так как предлагаемый способ позволяет исключить возникновение дефектов в легированных областях и, тем самым, улучшить основные электрические характеристики р-n-переходов (повысить пробивные напряжения и снизить утечки), применение данного способа позволит повысить процент выхода годных изделий, их качество и надежность.


Формула изобретения

СПОСОБ СОЗДАНИЯ ЛЕГИРОВАННЫХ ОБЛАСТЕЙ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ И ИНТЕГРАЛЬНЫХ МИКРОСХЕМ путем окисления кремниевых пластин, вытравливания окон в маскирующем окисле, создания окисла в вытравленных окнах и ионной имплантации бора с последующей его разгонкой, отличающийся тем, что, с целью улучшения электрических характеристик полупроводниковых приборов и интегральных микросхем путем исключения дефектов в областях, легированных бором, выращивают окисную пленку в вытравленных окнах толщиной, определяемой соотношением d = kE,
где d - толщина окисла, нм;
E - энергия ионного легирования, кэВ;
K - коэффициент, равный (3,6 - 4,0) нм/кэВ,
после чего проводят ионную имплантацию бора в окисел энергией из диапазона 20-100 кэВ, соответствующей выбранной толщине, окисла, а затем переводят разгонкой бор из окисла в кремний.

РИСУНКИ

Рисунок 1, Рисунок 2

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Номер и год публикации бюллетеня: 36-2001

Извещение опубликовано: 27.12.2001        




 

Похожие патенты:
Изобретение относится к технологии полупроводниковых приборов, в частности к технологии изготовления интегральных механоэлектрических преобразователей

Изобретение относится к области производства полупроводниковых приборов и может быть использовано в технологии изготовления дискретных приборов и интегральных схем для очистки (геттерирования) исходных подложек и структур на основе монокристаллического кремния от фоновых примесей и дефектов

Изобретение относится к методам формирования твердотельных наноструктур, в частности полупроводниковых и оптических, и может быть использовано при создании приборов нового поколения в микроэлектронике, а также в оптическом приборостроении

Изобретение относится к способам образования квазиодномерных твердых кремниевых наноструктур

Изобретение относится к области легирования твердых тел путем облучения ионами фазообразующих элементов и может быть использовано для ионной модификации структуры и физико-механических свойств металлов, полупроводников и сверхпроводников

Изобретение относится к области производства полупроводниковых приборов и может быть использовано в технологии для формирования в кристаллах областей с различным типом и величиной электропроводности с помощью имплантации ионов средних (10-5000 кэВ) энергий

Изобретение относится к области легирования твердых тел путем их облучения пучком ионов из фазообразующих атомов и может быть использовано для структурно-фазовой модификации твердых тел, например для улучшения их физико-механических, коррозионных и других практически важных свойств
Наверх