Оптоэлектронный элемент памяти

 

Оптоэлектронный элемент памяти, выполненный на сильнолегированной подложке арсенида галлия, содержащий излучательный p - n-гетеропереход, образованный гетерослоями Gа1-yAlyAs и Gа1-2Al2As, последний из которых граничит с подложкой и имеет с ней один тип проводимости при y>2, активный транзисторный слой с контактами истока и стока и электродом затвора, отделенный от указанных гетерослоев изолирующим слоем из твердого раствора Gа1-xAlxAs:0 и имеющий сформированную в активном и изолирующем слоях до слоя Ga1-yAlyAs канавку, на дне которой сформирован омический контакт с площадью, меньшей площади дна канавки, и гальванически соединенный с контактом стока, отличающийся тем, что, с целью повышения верхней температурной границы рабочего диапазона элемента, между активным транзисторным слоем и изолирующим слоем Gа1-xAlxAs: 0 введен слаболегированный слой арсенида галлия, толщина которого dн и степень легирования Nн связаны с толщиной da и da и степенью легирования Nн активного слоя соотношением dнNнdaNa10-2, а молярные доли алюминия в упомянутых полупроводниковом и изолирующем слоях связаны соотношением x>y.

Изобретение относится к оптоэлектронике и может быть использовано в качестве элемента памяти, оптоэлектронного триггера и т.д. в системах оптоэлектронной обработки информации. Целью изобретения является повышение верхней границы рабочего температурного диапазона (до температуры 450-500К). На фиг.1 изображена конструкция предлагаемого оптоэлектронного элемента памяти; на фиг. 2 график выходных управляющих характеристик (интенсивность света от напряжения на затворе). Элемент памяти состоит из сильнолегированной подложки 1 из арсенида галлия, например n-типа проводимости с концентрацией 1018 см-3, прилегающего к ней полупроводникового слоя 2 твердого раствора Gа1-zAlzAs, одноименного с подложкой типа проводимоcти, прилегающего к последнему полупроводникового слоя 3 твердого раствора Gа1-yAlyAs, противоположного типа проводимости, образующего с предыдущим р-n-гетеропереход, прилегающего к нему монокристаллического изолирующего слоя 4 твердого раствора Gа1-xAlxAs 0 прилегающего к нему слоя 5 слаболегированного арсенида галлия, например с Nн 1014 см-3 и толщиной dн-10-4 см и прилегающего к нему активного транзисторного слоя 6 арсенида галлия n-типа проводимости Na 1017 см-3 da10-5 см-3 с размещенными на нем контактами стока 7 и истока 8 и электродом затвора 9, при этом соотношение между мольными долями алюминия в слоях выбирается, например, Х 0,50; Y 40; Z0,30. Кроме того, в слоях 4,5,6 выполнена канавка, на дне которой сформирован омический контакт 10 к широкозонному слою 3, площадь которого меньше площади световыводящего окна 11, и который имеет гальваническую связь 12 с контактами истока 8. Таким образом, между концентрацией легирующей примеси и толщиной слоя 5, а также концентрацией легирующей примеси и толщиной активного слоя 6 существует следующая взаимная связь: NнdнNada10-2 В работе предлагаемого элемента памяти можно выделить три основных режима: записи, хранения и стирания записанной ранее информации. В режиме записи вследствие наличия обратной положительной связи зависимость выходная мощность напряжение на затворе имеет гистерезисный характер (фиг. 2) Когда рабочее состояние прибора на плоскости (Рвых, Uзап ) задается точкой 13, то при подаче на управляющий затвор напряжения, удовлетворяющего соотношению где U0 постоянное смещение на затворе; U управляющее напряжение, система переходит в другое состояние, характеризуемое другой устойчивой точкой 14 "Запись". В указанном состоянии система будет излучать существенно большую световую мощность, а по цепи истоксток потечет существенно больший ток, определяемый напряжением на области исток сток и совместной проводимостью слоев 5 и 6. Резкое увеличение выходной мощности излучаемого света при тех же напряжениях на затворе и истоке относительно подложки стали возможны благодаря приобретению добавочной (активированной светом) проводимости слоя 5 в момент подачи дополнительного "открывающего" импульса U. Считывание информации осуществляется посредством измерения интенсивности выходного излучения, либо тока исток подложка. В режиме стирания при подаче на управляющий затвор напряжения, удовлетворяющего соотношениям (рассматриваем случай n-типа активного слоя) , система переходит в первоначальное состояние, характеризуемое на плоскости (Рвых Uзатв) точкой 13. В момент записи информации, благодаря тому, что канал полностью открыт (отсутствует ОПЗ в слое 6) ток, протекающий через прибор, превышает пороговое значение, в результате чего эмиссируемый p-n-гетеропереходом свет активирует дополнительную проводимость в слое 5, которая компенсирует частичную потерю проводимости канала при возвращении затвора 9 в состояние U0. Так как активация дополнительной проводимости в слое 5 может проводиться и от внешнего источника света, то указанный элемент может быть использован в качестве ключевого устройства в волоконных системах связи. Так как часть невыведенного света преобразуется в неравновесные электроннодырочные пары и в дальнейшем принимает участие в излучательных рекомбинационных процессах, то имеет место частичная регенерация поглощаемой энергии. Предлагаемый элемент является оптоэлектронной интегральной схемой, согласующейся по уровню управляющих сигналов с существующими усилительными и логическими схемами и устройствами. Рабочий температурный диапазон прибора 4-500 К, причем нижняя граница определяется чистотой материала, т.е. отсутствием вымораживания носителей на глубоких уровнях неконтролируемой примеси в слоях 2, 3, 6, что при нынешнем уровне ростовой технологии (ЖФЭ и МОС V VД) и в силу использования степени легирования, близкой к вырождению, позволяет достичь температур меньших 4К. Верхняя температурная граница определяется температурами, при которых активация проводимости слаболегированного слоя за счет поглощаемого света превышает активацию проводимости за счет термогенерации равновесных носителей в указанном слое. Количественные оценки, приведенные выше указывают на то, что ограничение за счет этого эффекта более слабое (Т= 600 К), чем ограничение из-за потери внутреннего квантового выхода, учет которых дает для верхней границы значение 450-500 К. Таким образом, предлагаемый элемент памяти является интегральным оптоэлектронным модулем, с уровнями управляющих сигналов и питающих напряжений, соответствующих существующих интегральным усилительным и логическим схемам на кремнии и с рабочим температурным диапазоном 4-500 К.

Формула изобретения

Оптоэлектронный элемент памяти, выполненный на сильнолегированной подложке арсенида галлия, содержащий излучательный p n-гетеропереход, образованный гетерослоями Gа1-yAlyAs и Gа1-2Al2As, последний из которых граничит с подложкой и имеет с ней один тип проводимости при y>2, активный транзисторный слой с контактами истока и стока и электродом затвора, отделенный от указанных гетерослоев изолирующим слоем из твердого раствора Gа1-xAlxAs:О и имеющий сформированную в активном и изолирующем слоях до слоя Ga1-yAlyAs канавку, на дне которой сформирован омический контакт с площадью, меньшей площади дна канавки, и гальванически соединенный с контактом стока, отличающийся тем, что, с целью повышения верхней температурной границы рабочего диапазона элемента, между активным транзисторным слоем и изолирующим слоем Gа1-xAlxAs: О введен слаболегированный слой арсенида галлия, толщина которого dн и степень легирования Nн связаны с толщиной da и степенью легирования Nн активного слоя соотношением dнNнdaNa10-2, а молярные доли алюминия в упомянутых полупроводниковом и изолирующем слоях связаны соотношением x>y.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области микроэлектроники и может быть использовано в оптоэлектронных интегральных схемах

Изобретение относится к области приборостроения и может быть использовано для получения видимых изображений объектов, испускающих или рассеивающих инфракрасное (ИК) и субмиллиметровое (СМ) электромагнитные излучения (ЭМИ)

Изобретение относится к автоматике и пычиа1ителышн тех1шке и может быть использовано, например, в устройствах ввода оптической информации

Изобретение относится к автоматике и вычислительной технике и может быть использовано, например, в системах вводе оптической информации в ЭВМ

Изобретение относится к быстродействующим фотодетекторам оптического диапазона волн и может найти применение при создании быстродействующих приемников излучения для оптических систем передачи информации
Наверх