Способ получения катодолюминофора

 

l83 308

ОПИСАНИЕ

ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

Союз Советских

Социалистических

Республик

Зависимое от авт. свидетельства №

Кл. 22f, 15

Заявлено 10.Ч111.1964 (№ 917375/23-26) с присоединением заявки №

Приоритет

Опубликовано 17.Ч1.1966, Бюллетень № 13

Дата опубликования описания 16ХП1.1966

Комитет по делам изобретениЙ и открытиЙ при Совете Министров

СССР

МПК С 09с К 621 3 032 35 661 .42:546.654 (088.8) Авторы изобретения

P. И. Смирнова и Э, Я. Песина

Государственный институт прикладной химии

Заявитель

СПОСОБ ПОЛУЧЕНИЯ КАТОДОЛ!ОМИНОФОРА

Известный способ получения люминофора па основе оксихлорида лаптяпа, яктивированного Sb. В1, Srr Pr и Nrl, заключается в прокяливапии составленной шихты.

Предложенный способ отличается от известного применением в качестве активатора тулия, который сообщает, при возбуждении катодным пучком, оксихлориду лантана синюю люминесценцию (/„,„„460 лтлк); яркость свечения люминофора в 1,5 раза превышает яркость применяемого в настоящее время малоинерционного люминофора. Повышенная яркость свечения полученного малоинерционпого люминофора — оксихлорида лаптапа, яктивированного тулпем, дает возможность примепять указанный люминофор в некоторых типах электроннолучевых приборов.

Пример. Шпхту следующего состава (в вес. ч.): 4,56 1аеО», 2,96 NH C1, 0,003—

5 0,005 Тц, высушивают прп 100 — 120"С, переносят в кварцеиий тигель и прокялпвяют в силитовой печи прп 900 — 1100 С в течение 0,5—

2 час.

Предмет изобретения

Способ получения катодолюминофора на основе окспхлорида лантана с применением активатора, отличатощийся тем, что, с целью получения синей люминесценции и повышен15 пой яркости люминофора, в качестве активатора прпментпот тулпй.

Способ получения катодолюминофора 

 

Похожие патенты:

Изобретение относится к неорганическим сцинтилляционным материалам, предназначенным для регистрации тепловых нейтронов и пригодным для создания на их основе радиационных детекторов для радиоэкологического мониторинга территорий и акваторий, контроля космического и техногенного нейтронного фона, для создания комплексов технического контроля за первичным ядерным топливом и за изделиями из делящихся материалов

Изобретение относится к новым неорганическим сцинтилляционным материалам, к новому сцинтиллятору кристаллического типа, особенно в форме монокристалла, и может быть использовано для регистрации ионизирующего излучения в виде электромагнитных волн низких энергий, гамма-излучения, рентгеновского излучения, космических лучей и частиц в фундаментальной физике, устройствах компьютерной томографии, РЕТ-томографах, в томографах нового поколения, гамма-спектрометрах, в карго-сканерах, в системах каротажа скважин, в системах радиационного контроля и др

Изобретение относится к электронной технике и освещению и может быть использовано при изготовлении осветительных и информационных устройств

Изобретение относится к детектированию ионизирующего излучения, а именно к люминофорам для термолюминесцентной дозиметрии и может быть использовано в индивидуальной и клинической дозиметрии, в дозиметрии окружающей среды, в космических исследованиях, в дозиметрии реакторов, ускорителей и других источников смешанного излучения, включающего быстрые нейтроны или тяжелые заряженные частицы и гамма-излучение

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий. Сцинтиллятор для детектирования нейтронов содержит кристалл фторида металла из ряда, включающего LiCaAlF6, LiSrAlF6, LiYF4, служащий в качестве матрицы, в котором содержание атомов 6Li в единице объема (атом/нм3) от 1,1 до 20. Кристалл имеет эффективный атомный номер от 10 до 40 и содержит, по меньшей мере, один вид лантаноида, выбранного из группы, состоящей из церия, празеодима и европия. Нейтронный детектор содержит указанный сцинтиллятор и фотодетектор. Для получения кристалла фторида металла расплавляют смесь, составленную из фторида лития, фторида указанного металла, имеющего валентность 2 или выше, и фторида лантаноида, и выращивают монокристалл из расплава. Сцинтиллятор по изобретению имеет высокую чувствительность к нейтронному излучению и пониженный фоновый шум, связанный с γ-лучами. 3 н. и 3 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к химической промышленности и может быть использовано в светодиодах белого свечения. Люминофор имеет общую стехиометрическую формулу ( Y 0,65 ± x   G d 0,30 ± x   L u 0,01   T b 0,01   C e 0,03 ) 3   ( A l 19   y B 0,1 ) 2   ( A l O 3,96 C l 0,02 P 0,02 ) 3 0.05 ≤ x ≤ 0.15,   0.02 ≤ y ≤ 0.04 с квантовым выходом Q>0,9, кубическую структуру граната с пространственной группой Ia3d со спектральными параметрами: λв = 460+_3 нм; λиз = 570+_3 нм, где λиз - длина волны возбуждения люминофора; λиз - длина волны излучения люминофора. Люминофор позволяет создавать светоизлучающие диоды с силой света порядка 400 кд для угла раскрытия Δ больше или равного 16°, световой выход 100÷115 люмен/Вт для режима возбуждения 3,5 В и 120 мА. Цвет свечения близок к тепло-белому, что позволяет использовать полученный люминофор в эффективных светодиодных светильниках для наружного и внутреннего освещения. 4 з.п. ф-лы, 4 ил., 1 пр., 1 табл.

Изобретение относится к технологии получения сцинтилляционных монокристаллов и может быть использовано при изготовлении чувствительных элементов детекторов гамма- и рентгеновского излучения Сцинтилляционные монокристаллы La(1-m-n)HfnCemBr(3+n), где m - мольная доля замещения La церием (0,0005≤m≤0,3), n - мольная доля замещения La гафнием (0≤n≤0,015), получают из смеси бромидов металлов. Шихту загружают в кварцевую ампулу с затравкой, ампулу вакуумируют, запаивают, устанавливают в ростовую установку, нагревают до расплавления шихты, выдерживают до установления в расплаве равновесного состояния, выращивают монокристалл путем создания в ампуле градиентного температурного участка и охлаждают, при этом используют многозонную ростовую установку с электродинамическим перемещением температурного градиента в продольно-осевом направлении. Для расплавления шихты температуру нагревателя установки в зоне затравки t1 выбирают из интервала 685°C<t1<720°C, температуру следующего нагревателя t2 - из интервала 770°C≤t2≤790°C. После расплавления шихты ампулу выдерживают не менее 10 часов, выращивание монокристалла осуществляют перемещением температурного градиента вдоль продольной оси установки со скоростью 0,3 мм/ч≤vтг≤0,5 мм/ч, при этом пограничные значения температур так называемых холодной tхз и горячей tгз зон градиентного участка выбирают из интервалов 720°C<tхз≤740°C и 790°C≤tгз≤820°C, а охлаждение ампулы осуществляют со скоростью не более 15°C/ч. Технический результат: точность поддержания температурных полей, стабильность их перемещения на всех этапах выращивания кристалла, строгий контроль температурных и временных параметров ростового процесса, получение с высоким выходом монокристаллов с заданными оптическими характеристиками и размерами. 1 з.п. ф-лы, 2 табл., 9 пр.

Изобретение может быть использовано в медицине и технике при изготовлении рентгеновских устройств с энергией излучения более 20 кэВ для диагностики и дефектоскопии. Рентгенолюминофор имеет химическую формулу (Gd1-x-yTbxHfy)2O2-z(ΣHal)zS, где ΣHal=F1- и Cll-, F1- и Br1- или F1- и J1-, 0,01<х≤0,2; 0,001<у<0,1; 0,001<z≤0,1. Пикселированный экран имеет многоэлементное покрытие из элементов квадратной формы со стороной не более 55 мкм и высотой не более 30 мкм на основе указанного рентгенолюминофора. В качестве разделительного слоя экран содержит сетку из оксида гадолиния со свободным сечением свыше 60%, которая соприкасается с многоэлементным покрытием. Указанные элементы сформированы на зеркальном покрытии несущей пластины из поликарбоната толщиной 1,5 мм. На поверхности пикселированного слоя в оптическом контакте с каждым его элементом закреплена матрица кремниевых фотодиодов. Рентгенолюминофор негигроскопичен, устойчив к воздействию атмосферы, имеет высокую спектральную яркость и переменную длительность послесвечения. 2 н. и 3 з.п. ф-лы, 3 ил.
Наверх