Циклон

 

Использование: для очистки газов от пыли, разделения пылегазовых смесей в химической, фармацевтической, текстильной промышленности, а также в промышленности строительных материалов и на мукомольных заводах. Сущность изобретения: циклон содержит цилиндроконический или конический корпус с тангенциальным или спиральным входным патрубком, осевыми выходным и пылевыгрузочным патрубками. Перфорированная камера выполнена с эквидистантной корпусу поверхностью, причем нижний диаметр камеры равен диаметру выходного или выгрузочного патрубка, площадь перфораций составляет 10 - 60% площади камеры, а диаметры циклона D, выходного патрубка d и верхний диаметр камеры DI связаны между собой соотношением 3 ил. , 1 табл.

Изобретение относится к технике очистки газов от пыли, разделения пылегазовых смесей и может быть использовано в химической, фармацевтической, текстильной промышленности, а также в промышленности строительных материалов и на мукомольных заводах.

Известен способ для очистки воздуха от древесных стружек, содержащий цилиндроконический корпус тангенциальный входной патрубок и осевой выходной патрубок, к которому основанием вверх прикреплен перфорированный конус с круглыми перфорациями.

Наиболее близким из известных устройств является противоточный циклон с перфорированной камерой, отличительной особенностью которого является наличие перфорированной камеры в виде усеченного конуса, установленного большим основанием вверх и с зазором по отношению с выходному патрубку и с возможностью перемещения по оси для нахождения оптимального режима работы. Указанное наличие перфорированной камеры позволяет в некоторой степени повысить эффективность улавливания пыли за счет уменьшения действия радиального стока в случае экспериментального нахождения оптимального положения вставки между стенками циклона и выходным патрубком, а также снизить гидравлическое сопротивление циклона.

К недостаткам известного циклона следует отнести: отсутствие радиального перемещения перфорированного конуса, что делает невозможным функционирование его в качестве организатора потока на границе нисходящего запыленного и восходящего очищенного вихревых потоков; неопределенность положения поверхности конуса относительно поверхности циклона и неопределенность его основных геометрических параметров (высоты, диаметров нижнего и верхнего оснований, величины перфорирования, формы перфораций), что может нивелировать положительное действие конуса на радиальный сток и гидравлическое сопротивление циклона.

Целью изобретения является уменьшение радиального уноса пыли и снижение гидравлического сопротивления противоточного циклона.

Указанная цель достигается тем, что противоточный циклон, содержащий цилиндроконический или конический корпус с тангенциальными или спиральными входным патрубком, осевыми выходными и выгрузочными патрубками для выхода очищенного газа и осевшей пыли, снабжен эквидистантным перфорированным цилиндроконическим или коническим организатором потока, причем нижний диаметр организатора равен диаметру выходного или выгрузочного патрубка, площадь перфорации составляет 10-60% площади организатора, а диаметры циклона D, выходного патрубка d и верхний диаметр организатора потока D' связаны между собой соотношением D'= .

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается от прототипа наличием новых геометрических соотношений между корпусом цик- лона и перфорированной камерой, а именно: эквидистантностью поверхности циклона и камеры; равенством диаметра нижнего основания камеры диаметру выходного или пылевыгрузочного патрубка циклона; величиной перфорирования, равной 10-60% поверхности камеры; связь диаметров циклона D, нижнего отверстия выходного патрубка и верхнего основания перфорированного потока D' соотношением вида D'= .

Таким образом, заявляемое устройство соответствует критерию изобретения "Новизна".

Сравнение заявляемого решения с другими техническими решениями показывает, что перфорированные основные камеры, установленные внутри корпуса циклона, известны, однако при их введении вдоль наружной поверхности циклона наблюдается резкое снижение эффективности улавливания пыли вследствие ухудшения гидродинамических условий осаждения пыли, а при их установке на выходном патрубке или вдоль него эффект одновременного снижения вторичного уноса пыли и гидравлического сопротивления циклона очень мал или отсутствует.

Изготовление перфорированной камеры с герметическими соотношениями, заявляемыми выше, позволяет разместить ее в так называемой зоне с нулевой вертикальной скоростью потока; создать жесткий барьер между нисходящими и восходящими потоками в циклоне, не нарушающий гидродинамических условий осаждения пыли (т. е. не оказывающий возмущающего действия на работу нисходящего и восходящего вихрей); уменьшить нестационарные колебания движущихся вниз и вверх вихрей, снизить захват твердых частиц из внешнего запыленного внутренним очищенным потоком и кроме того ламинизировать движение потоком в циклоне, т. е. такая камера фактически разделяет и стабилизирует нисходящий запыленный и восходящий очищенный потоки в циклоне, а перфорации варьируют его гидравлическое сопротивление. Это дает основания называть ее перфорированным организатором потока в циклоне.

Таким образом, вышеуказанное позволяет сделать вывод о соответствии технического решения критерию "Существенные отличия".

На фиг. 1 изображен цилиндроконический циклон с перфорированным цилиндроконическим организатором потока; на фиг. 2 - цилиндроконический циклон с коническим организатором потока; на фиг. 3 - конический циклон.

Перфорированный организатор 1 потока представляет собой цилиндроконическую или коническую перфорированную жесткую поверхность, расположенную эквидистантно цилидрическому или коническому корпусу 2 противоточного циклона, снабженного тенгенциальным или спиральным патрубком 3 для ввода пылегазовой смеси, осевой выходным патрубком 4 для вывода очищенного газа, пылевыпускным патрубком 5 для вывода уловленной пыли.

Циклон работает следующим образом.

Пылегазовая смесь по патрубку 3 поступает тангенциально или спирально в кольцевое пространство между корпусом циклона и выходным патрубком 4, образуя внешний густозапыленный поток из частиц пыли, отбрасываемых к стенке циклона центробежной силой, опускающийся вниз по спирали к пылевыгрузочному патрубку 5. Здесь воздушный поток меняет направление на противоположное и поднимается в виде внутреннего закрученного вихря меньшего патрубку 4 циклона, захватывая более мелкие, не успевшие дойти до стенки циклона частицы пыли из внешнего потока с собой, в выходной патрубок циклона (так называемой "радиальный" или "вторичный" унос пыли). Эффективность осаждения пыли в циклоне при этом снижается.

Перфорированный организатор потока, расположенный в пограничной зоне между потоками эквидистантно стенкам циклона при указанном выше соотношении диаметров циклона, выходного патрубка и верхнего диаметра организатора, разделяет внешний и внутренний потоки, не позволяя им смешиваться друг с другом. При этом частицы пыли, увлекаемые внешним потоком к стенкам корпуса 2 циклона, не захватываются внутренним очищенным потоком и не уносятся в выходной патрубок 4 циклона. Часть воздуха из внешнего пылегазового потока просасывается через перфорации циклона в центральную зону пониженного давления циклона, что снижает скорость внешнего вихря, в котором происходит пылеосаждение, способствует деструктированию и ламинаризации движения потока в циклоне, приводит к повышению эффективности осаждения частиц пыли, к снижению гидравлического сопротивления циклона.

Снижение гидравлического сопротивления циклона с перфорированным организатором потока, помещенным в пограничную зону внешнего и внутреннего потоков, зависит от величины площадки перфорации организатора: чем больше площадь перфорации в защищаемом диапазоне, тем больше снижение сопротивления циклона. Защищаемый диапазон перфорирования 10-60% от всей площади поверхности организатора.

Варианты циклонов с организатором потока, перфорированным менее, чем на 10% имеют незначительно меньше гидравлическое сопротивление по сравнению с циклонами без организатора потока; а более, чем на 70% , имеют незначительное увеличение эффективности осаждения пыли. Форма перфораций при указанном расположении перфорированного организатора потока определяющего значения не имеет.

Эквидистантное расположение организатора при вышеуказанном соотношении диаметров циклона и организатора потока определяет его место в радиальном направлении, но не определяет его высоту. Высоту организатора определяет величина нижнего диаметра организатора.

Выбор высоты определяется в зависимости от технологических параметров пылегазового потока, поступающего на очистку: если циклон используется в сильнозапыленных потоках, то меньший нижний диаметр организатора равен диаметру патрубка, в слабозапыленных - равен диаметру пылевыгрузочного патрубка.

Таким образом, использование заявляемого изобретения позволит существенно снизить гидравлическое сопротивление используемых, в том числе серийных, противоточный циклонов (в два раза), причем одновременно повысится эффективность улавливания мелкодисперсной пыли средним размером 12 мкм (на 7,5% ).

Конструкция перфорированного организатора потока проста и неметаллоемка, что обуславливает меньшие затраты на усовершенствование действующих недостаточно эффективно противоточных циклонов, по сравнению с затратами на монтаж и изготовление новых, более эффективных пылеулавливающих аппаратов.

В лабораторных условиях были проведены испытания моделей циклонов с характерными геометрическими размерами, представляющими на фиг. 1. Для сравнения выбраны следующие технические характеристики циклонов: эффективность осаждения и унос мелкодисперсной пыли из аппарата, гидравлическое сопротивление (коэффициент гидравлического сопротивления) аппарата.

Для определения эффективности осаждения () или уноса (1- ) использована пыль хлорнафталинсульфокислого натрия плотностью 1950 кл/м3с средним геометрическим диаметром частиц 12 мкм (среднее квадратичное отклонение в логарифмически нормальном распределении частиц по размерам равно 1,197). Унос пыли (1- ) определяется по методу полной фильтрации отходящих от циклона газов через высокоэффективный тканевый фильтра с низким гидравлическим сопротивлением при расходе воздуха 70 м3/ч и запыленности воздуха 21 г/м3.

Гидравлическое сопротивление аппарата ( Н, н/м2) при определенной скорости воздуха (U, м/с) на выходе в канал фиксировалось с помощью дифманометра. Коэффициент гидравлического сопротивления циклона ( ) в характерном (входном) сечении циклона в автомодельном режиме движения потока (при скоростях воздуха более 40 м3/ч) определен по уровню = Н/0,5 U2, где - плотность воздуха, кг/м3.

В таблице приведены экспериментальные результаты, полученные при сравнении противоточного циклона без перфорированной вставки (циклон 1), прототипа (циклоны 2 и 3 по а. с. 874207), циклона с перфорированным организатором потока (циклон 4) и циклона с перфорированным конусом на выходном патрубке (циклон 5 по пат. США N 3513642).

Унос пыли из циклона с перфорированным организатором потока (циклон 4) на 0,074; 0,339; 0,271; 0,096 (т. е. на 7,4; 33,9; 27,1 и 9,6% ) меньше, чем в циклонах 1, 2, 3 и 5 соответственно.

Сопротивление циклона с перфорированным организатором потока (циклон 4) в 2,17 и 1,95 раза (т. е. на 117 и 95% ) меньше, чем циклона 1 и 5 соответственно, причем эффективность осаждения пыли составила 98,5% против 91,1 и 88,9% в циклонах 1 и 5.

Сопротивление циклона 2 и 3 в 1,10 и 1,34 раза (т. е. на 10 и 34% ) меньше, чем циклона с перфорированным организатором потока 4, но их эффективность осаждения пыли слишком низка (64,4 и 71,4% против 98,5% в циклоне 4), т. е. не обеспечивается одновременного действия эффекта снижения сопротивления и снижения радиального уноса пыли.

(56) Патент США N 3513642, кл. 55-399, 1970.

Авторское свидетельство СССР N 874207, кл. B 04 C 5/107, 1981.

Формула изобретения

ЦИКЛОН, содержащий цилиндроконический или конический корпус, тангенциальный или спиральный входной патрубок, осевые выходной и пылевыгрузочный патрубки, соосно установленную внутри корпуса перфорированную камеру, отличающийся тем, что, с целью повышения эффективности процесса улавливания за счет уменьшения радиального уноса пыли и снижения гидравлического сопротивления, поверхность перфорированной камеры выполнена эквидистантной корпусу, причем диаметр нижнего основания камеры равен диаметру входного патрубка или диаметру пылевыгрузочного патрубка, площадь перфораций составляет 10 - 60% поверхности камеры, а диаметр циклона D, нижнего отверстия выходного патрубка d и верхнего основания перфорированной камеры D' связаны между собой соотношением D'= .

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Циклон // 1835313

Изобретение относится к области выделения пыли из газопылевого потока при проведении циклонного процесса

Циклон // 1780839

Изобретение относится к классификации , дешламации и сгущению измельченных продуктов в водной среде в поле центробежных сил при обогащении полезных ископаемых

Изобретение относится к устройствам для осуществления процесса разделения суспензий в центробежном поле и может найти применение в химической и других отраслях промышленности

Изобретение относится к устройствам для разделения дисперсных систем типа твердое вещество-жидкость и может использоваться на предприятиях, применяющих метод электрохимической обработки для формообразования различных деталей

Изобретение относится к циклонным аппаратам и позволяет повысить эффективность очистки

Циклон // 2116842
Изобретение относится к порошкоулавливающим устройствам и предназначено для очистки выходящего в атмосферу газа и рекуперации не осевшей на окрашиваемое изделие порошковой краски

Изобретение относится к области технологических процессов, связанных с приготовлением, применением, переработкой и транспортировкой пылящих сыпучих материалов, и предназначено для сухой очистки газодисперсных потоков от пыли, включая мелкодисперсную пыль с низкой плотностью, в коксохимической, угольной, химической, металлургической промышленности

Изобретение относится к области теплоэнергетики и может быть использовано в котельных и технологических установках для очистки газовых потоков от твердых взвесей

Изобретение относится к сепараторам газа и твердых частиц

Изобретение относится к инерционной очистке газов от пыли и может быть использовано в любой отрасли производства, где применяется очистка газовых потоков от пыли, в частности после сушильных агрегатов в пищевой и химической промышленности

Изобретение относится к области улавливания мелкодисперсных, аэрозольных и растворенных жидких частиц, а также механических примесей из газового потока с использованием центробежных сил и может применяться в нефтяной, газовой, химической и других отраслях промышленности. Сепаратор газовый вихревого типа содержит вертикальный цилиндрический корпус, разделенный горизонтальной перегородкой на верхнюю и нижнюю камеры, верхнее и нижнее днища, сепарационные элементы, входной, выходной и сливной патрубки, дефлектор, газоотборный элемент и конфузор. В верхней камере сепарационный элемент расположен горизонтально, а в нижней - вертикально. Каждый сепарационный элемент выполнен в виде спирали с уменьшающимся от периферии к центру шагом навивки из тонкой плоской пластины с ребрами, расположенными по ширине пластины снаружи спирали, при этом ширина и выступ ребра сопоставимы по размеру от 3 до 5 мм, а расстояние между соседними ребрами на порядок больше, причем первое ребро расположено на расстоянии не менее 10 мм от края пластины, а за каждым ребром по ширине пластины выполнен ряд продолговатых отверстий, образующих сепарационные каналы. Торец вертикального сепарационного элемента приварен к горизонтальной перегородке, на которую в верхней камере установлен конфузор, выполненный в виде полого усеченного конуса, верхнее основание которого совпадает и приварено к наружной поверхности горизонтального сепарационного элемента, ось которого перпендикулярна оси выходного патрубка. В конфузоре размещен газоотборный элемент, в перегородке под конфузором выполнено отверстие по центру и отверстия, в которые вставлены трубки для прохождения газа, вне конфузора в перегородке выполнены отверстия, в которые вставлены дренажные трубки, длина которых выходит за пределы вертикального сепарационного элемента, такая же трубка вставлена в центральное отверстие под конфузором. Входной патрубок расположен эксцентрично относительно центра корпуса, эксцентриситет равен 1/3 внутреннего диаметра входного патрубка. Во входном патрубке установлен конфузор в виде усеченного конуса, а к сепарационному элементу приварен дефлектор напротив входного патрубка. На торцы горизонтального элемента также приварены дефлекторы, противоположно входному патрубку на корпусе установлен уровнемер. Сливной патрубок имеет кран. Техническим результатом является эффективное отделение взвешенных капель влаги и мелких частиц механических примесей из газожидкостного потока. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для очистки от твердых частиц загрязнений охлаждающей жидкости поршневых двигателей. Гидроциклонное устройство для очистки от твердых частиц загрязнений потока охлаждающей жидкости поршневых двигателей содержит цилиндрический корпус с расположенными в его верхней части подводящим тангенциальным патрубком и отводящим осевым патрубком, установленным коаксиально относительно цилиндрического корпуса, в нижней части которого расположена вихревая камера, при этом элемент с улавливающими отверстиями расположен внутри цилиндрического корпуса и вихревой камеры, которая сообщается с расположенным ниже грязесборником, имеющим корпус для сбора твердых частиц загрязнений, а улавливающие отверстия выполнены непосредственно в стенке вихревой камеры и сообщают полость этой камеры с грязесборником, причем верхняя часть корпуса грязесборника охватывает снаружи вихревую камеру. Изобретение обеспечивает повышение эффективности очистки потока охлаждающей жидкости от твердых частиц загрязнений. 3 ил.

Группа изобретений относится к устройствам для циклонной сепарации потока газожидкостной смеси, по существу, на газофазную фракцию и жидкостную фракцию посредством приведения потока газожидкостной смеси во вращение таким образом, что указанный поток газожидкостной смеси разделяется на центральную зону, по существу, содержащую газофазную фракцию, и внешнюю кольцевую зону, по существу, содержащую жидкостную фракцию. Устройство для циклонной сепарации потока газожидкостной смеси содержит корпус, оснащенный впускным отверстием для входного потока газожидкостной смеси, завихритель для вращения потока газожидкостной смеси, расположенный в корпусе далее по направлению потока от впускного отверстия для входного потока газожидкостной смеси, выпускное отверстие для газофазной фракции, открывающееся в центральную зону корпуса далее по направлению потока от завихрителя, и выпускное отверстие для жидкостной фракции, соединенное с внешней зоной корпуса за завихрителем далее по направлению потока. Выпускное отверстие для газофазной фракции и выпускное отверстие для жидкостной фракции подсоединены к общей сборной камере снаружи корпуса. Устройство дополнительно содержит по меньшей мере одно проницаемое и направляющее поток средство, расположенное по центру корпуса и соединенное с выпускным отверстием для газофазной фракции. Выпускное отверстие для газофазной фракции содержит газоотводный канал, проходящий через завихритель. Вход выпускного отверстия для газофазной фракции расположен на дистальном конце завихрителя, а направляющее поток средство соединено с завихрителем. Завихритель содержит лопасти завихрителя, соединенные с внутренней частью завихрителя. Выпускное отверстие для газофазной фракции проходит через внутреннюю часть завихрителя так, что расположенное сверху по потоку впускное отверстие выпускного отверстия газофазной фракции проходит на расположенную ниже по потоку сторону внутренней части завихрителя для подачи газа в направлении, обратном направлению потока жидкости. Емкость содержит по меньшей мере одно устройство для циклонной сепарации, при этом выпускное отверстие для газофазной фракции и выпускное отверстие для жидкостной фракции указанного устройства выходят в единое соединительное пространство. Техническим результатом является повышение эффективности разделения потока газожидкостной смеси. 2 н. и 15 з.п. ф-лы, 4 ил.

Изобретение относится к прикладной газодинамике, в частности к устройству для стабилизации вихревого потока. Устройство для стабилизации вихревого потока содержит корпус с входным и выходным патрубками для вихревого потока и направляющий элемент, расположенный внутри корпуса. Корпус выполнен в виде полого цилиндра, на торцевых фланцах которого закреплены входной и выходной патрубки. Направляющий элемент выполнен в виде подвижных плоских сегментов, подвижно сопряженных с торцевыми фланцами корпуса, при этом для смещения подвижных плоских сегментов в плоскости, перпендикулярной направлению движения вихревого потока, предусмотрен внутренний механизм. На боковой поверхности корпуса установлены привод внутреннего механизма и дополнительный патрубок для ввода стабилизирующего потока. Внутренний механизм выполнен в виде вращающегося цилиндрического кольца и фиксаторов, которые жестко закреплены на подвижных плоских сегментах и кинематически сопряжены с вращающимся цилиндрическим кольцом и торцевыми фланцами корпуса. Техническим результатом является улучшение технико-эксплуатационных параметров устройства, обеспечение возможности плавного регулирования основных параметров вихревых потоков, включая высокоэнтальпийные и криогенные многофазные вихревые потоки. 1 з.п. ф-лы, 3 ил.

Изобретение относится к изготовлению футеровок внутренней части гидроциклонов - песковых насадок, работающих в водной среде и среде слабых растворов кислот и щелочей для обеспечения защиты от абразивного износа. Композиционный материал включает комбинацию стереорегулярного цис-1,4-полиизопрена с содержанием звеньев цис-1,4 не менее 96% - СКИ-3 и стереорегулярного полибутадиена с содержанием звеньев цис-1,4 87-95 % - СКД-1, сверхвысокомолекулярный полиэтилен, модифицированный 6,5 мас.% модификатора - карбида кремния с размером фракции не более 40-60 мкм, серу, 2МБТ, гуанид Ф, стеарин, белила цинковые, техуглерод П-330 и П-803, воск ЗВ-1, парафин, инден-кумароновую смолу, рубракс, масло ПН-6, ацетонанил Н, диафен ФП, фталевый ангидрид. Изобретение позволяет получать резинополимерный материал с повышенной каркасностью, износостойкостью, морозостойкостью. 2 табл., 1 пр.
Наверх