Способ геоэлектроразведки

 

Использование: в измерительной технике, в частности в процессах определения глубины заложения фундаментов зданий и сооружений. Сущность изобретения: процесс предусматривает установление взаимосвязи между геоэлектрическими и геометрическими параметрами фундаментов за счет измерения сопротивления заземленной части фундамента, удельного электрического сопротивления окружающего его грунта и периметра у поверхности земли, входящего в комплексный электрометрический параметр. Глубину заложения фундамента рассчитывают по ф-ле: h = P X, где h - глубина заложения фундамента; P - периметр фундамента у поверхности земли; X - переводной коэффициент, учитывающий геоэлектрические и геометрические параметры объекта. 2 ил.

Изобретение относится к обнаружению скpытых масс геофизическими способами разведки, в частности к инженерно-геофизическим изысканиям для ремонтно-восстановительных работ, и может быть использовано во всех других областях народного хозяйства, где геометрические размеры заземленной части массива колеблются в широких пределах, например, в археологии и горной геофизике.

При реконструкции инженерных сооружений важным параметром, существенно влияющим на несущую способность фундаментов, является глубина их заложения. Как правило, даже в сохранившейся технической документации, касающейся построенных ранее мостов и других инженерных сооружений, отсутствуют достоверные сведения о глубине заложения нижней части фундаментов. Среди методов инженерной геофизики известны способы электроразведки обнаружения предметов и объектов под землей [1] . Известные способы осуществляются с помощью аппаратуры и устройств для геофизического исследования комплексного электрического поля, создаваемого с помощью переменного тока, подводимого от автономного источника к двум или большему числу электродов, вводимых в грунт.

Однако вышеназванные способы позволяют в основном только определять местоположение объектов, не давая информации о глубине их заложения. Кроме того, использование при этом аппаратуры сейсмического зондирования делает эти методы громоздкими, неудобными в эксплуатации и ограниченными в применении.

Наиболее близким по технической сущности и достигаемому эффекту к изобретению является способ геоэлектроразведки [2] , который предназначен для поисков хорошо проводящих объектов (рудных тел, инженерных конструкций и т. п. ) и согласно которому пропускают в землю электрический ток и определяют параметры геоэлектрического разряда по результатам интерпретации измерений.

Недостатком данного способа является невозможность определения глубины заложения фундаментов зданий и сооружений.

Целью изобретения является определение глубины заложения фундаментов существующих инженерных сооружений.

Цель достигается тем, что измеряют переходное сопротивление заземленной части фундамента, равное отношению напряжения на нем в месте ввода тока к стекающему с него току, далее измеряют удельное электрическое сопротивление окружающих фундамент горных пород, одновременно определяют периметр фундамента у поверхности земли и рассчитывают комплексный электрометрический параметр по формуле L= , (1) где - удельное электрическое сопротивление окружающего фундамент грунта, Ом. м; Р - периметр фундамента, м; R - переходное сопротивление заземленной части фундамента, м, определяют переводной коэффициент путем установления взаимосвязи между геоэлектрическими и геометрическими параметрами фундамента по теоретически рассчитанной зависимости: L= f(x), L = , (2) где K(m) - эллиптический интеграл II рода; Х = a/P; Р = bK(m); m = 1; a, b, c - размеры полуосей полиэллипсоида; t - переменная интегрирования, после чего определяют глубину h заложения фундамента по формуле h = P X . (3)
На фиг. 1 представлена схема измерения глубины заложения фундамента, реализующая предложенный способ; на фиг. 2 представлен набор кривых, позволяющих подобрать переводной коэффициент Х, учитывающий геоэлектрические и геометрические параметры объекта, в зависимости от комплексного электрометрического параметра и от геометрической формы фундамента.

Кривая А соответствует фундаменту прямоугольного сечения, в котором отношение меньшей стороны к большей равно 0,01.

Кривая Б соответствует фундаменту, в котором отношение меньшей стороны к большей равно 0,25.

Кривая В - для фундаментов, в которых стороны равны.

Суть способа заключается в следующем.

Помещенные в грунт железобетонные фундаменты насыщаются грунтовой влагой, и при положительных температурах и полном влагонасыщении его удельное электрическое сопротивление находится в пределах 100-1000 Омм. Оптимальная же величина при увлажненном бетоне - 150-300 Омм, т. е. на уровне удельного электрического сопротивления земли. Сопротивление растеканию тока с фундамента-заземлителя в землю пропорционально удельному электрическому сопротивлению грунта, в котором расположен фундамент.

Способ осуществляется следующим образом.

Стандартной электроразведочной установкой производят измерение переходного электрического сопротивления заземленной части фундамента, для чего одна пара электродов 1 - приемный и токовый - остаются в грунте, а другую 2 располагают на фундаменте или цокольной части сооружения (фиг. 1). Причем токовый электрод располагают на таком расстоянии от исследуемого фундамента-заземлителя, чтобы не могло возникнуть взаимодействия токовых полей электродов, приемный электрод располагают в зоне нулевого потенциала между токовым электродом и исследуемым фундаментом. В качестве датчиков могут быть использованы медные, латунные, цинковые или свинцовые пластины диаметром 10-25 см, которые совместно с поролоном, пропитанным электролитом, крепят к фундаменту. Затем путем обмерных работ определяют периметр фундамента у поверхности земли и электросопротивление грунта. На основании полученных данных рассчитывают комплексный электрометрический параметр по формуле (1).

На основании формулы (2) или теоретико-экспериментальной номограммы (фиг. 2) в зависимости от величины электрометрического параметра находят переводной коэффициент Х, учитывающий геоэлектрические и геометрические параметры объекта. Далее в зависимости от априорной формы заземленной части фундамента рассчитывают глубину его заложения по формуле (3).

Примеры осуществления способа.

Весьма важно в каждом конкретном случае выбрать оптимальную схему установки электродов относительно обследуемого фундамента с учетом расстояний между заземлителем, измерительным и токовым электродами, позволяющих наиболее полно учесть периметр заземлителя и электросопротивлениe грунта.

Так, например, для заземлителя с радиусом до 5 м расстояние между токовым электродом и измеряемым фундаментом составляет 40-60 м, а для заземлителя с радиусом 5-20 м - соответственно 100-120 и для радиуса свыше 20 м это расстояние увеличивается пропорционально увеличению радиуса заземлителей на 1 м соответственно 5 м.

П р и м е р 1. Предположим, что в грунт заглублен металлический фундамент цилиндрической формы с переходным сопротивлением 10 Ом, периметром 1,5 м, удельное электрическое сопротивление грунта 25 Омм. Комплексный параметр
L = = 1,7.

По номограмме (фиг. 2) находят переводной коэффициент Х = 0,7, что соответствует глубине h = P X = 1,5 0,7 = 1 м.

П р и м е р 2. Предположим, что в грунт помещена железобетонная опора с периметром 3 м, переходным сопротивлением 2 Ом. Удельное электрическое сопротивление грунта 25 Ом. м. Комплексный параметр
L = = 4,16.

По номограмме (фиг. 2) находят переводной коэффициент Х = 2,4, что соответствует глубине h = P X = 5 2,4 = 7,2 м.

П р и м е р 3. Предположим, что железобетонный фундамент здания в г. Очакове имеет периметр 122,6 м, переходное сопротивление 0,1 Ом, удельное электрическое сопротивление грунта 13 Омм. Комплексный электрометрический параметр равен
L = = 1,06.

По номограмме (фиг. 2) находят переводной коэффициент Х = 0,18, что соответствует глубине h = P X = 122,6 0,18 = = 22 м.

Использование предложенного способа определения глубины заложения фундаментов зданий и сооружений обеспечивает по сравнению с существующими способами следующие преимущества:
а) возможность получения глубины заложения фундаментов с большой производительностью, эффективностью и безопасностью производства работ при сохранении окружающей среды без экологического ущерба;
б) универсальность, возможность измерения глубины заложения фундаментов, находящихся в любых климатических зонах и инженерно-геологических условиях;
в) значительно повышает полноту и достоверность информации при ремонтно-восстановительных работах. (56) 1. Патент США N 4072942, кл. G 01 V 3/04, 1976.

2. Авторское свидетельство СССР N 1420438, кл. G 01 V 3/06, 1987.


Формула изобретения

СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ, заключающийся в пропускании в землю электрического тока и определении параметров геоэлектрического разреза по результатам интерпретации измерений, отличающийся тем, что, с целью обеспечения глубины заложения фундаментов зданий и сооружений, фундамент подключают к источнику постоянного тока, измеряют переходное сопротивление заземленной части фундамента, затем измеряют удельное электрическое сопротивление окружающего фундамент грунта, одновременно определяют периметр фундамента у поверхности земли и рассчитывают комплексный электрометрический параметр L по формуле
L=
где - удельное электрическое сопротивление окружающего фундамент грунта;
P - периметр фундамента;
R - переходное сопротивление заземленной части фундамента,
определяют переводной коэффициент X путем установления взаимосвязи между геоэлектрическими и геометрическими параметрами фундамента по теоретически рассчитанной зависимости
L = f (X),
L=
где K (m) - эллиптический интеграл II рода;
X = a / P;
P = bK (m);
m = c / B 1;
a, b, c - размеры полуосей полуэллипсоида;
t - переменная интегрирования,
после чего определяют глубину h заложения фундамента по формуле
h = P X.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для определения длины погруженной в среду электропроводящей сваи опорных конструкций наземных и морских сооружений

Изобретение относится к области исследований с использованием магнитных, в частности электромагнитных, средств и может быть использовано для определения местонахождения неметаллических трубопроводов, а именно полимерных, бетонных, асбоцементных и т.д., предназначенных для транспортировки жидких сред, а именно нефти и нефтепродуктов, воды, водных растворов и суспензий и т

Изобретение относится к электроразведке малых глубин и может быть использовано при изучении геоэлектрической неоднородности верхней части разреза при инженерно-геологических изысканиях в сложных условиях заземлении (мерзлый грунт, сухие пески, твердые искусственные покрытия)

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания нефтегазовых залежей

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания нефтегазовых залежей

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания нефтегазовых залежей

Изобретение относится к области геофизических исследований, а более конкретно - к способам морской геоэлектроразведки с использованием регулируемых искусственных источников электромагнитного поля

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания нефтегазовых залежей
Наверх