Способ определения курсового угла исполнительного механизма и устройство для его осуществления

 

Сущность изобретения: устройство для осуществления способа определения курсового угла исполнительного механизма содержит два дальномера (1, 2), 1 задающий генератор (3), 1 вычислитель (4), включающий 1 блок вычитания (5), 2 квадратора (6, 7), 1 сумматор (8), 1 деквадратор (9), 1 делитель (10) и 1 функциональный преобразователь (11). 1 - 5 - 6 - 8 - 9 - 10 - 11; 2 - 5; 3 - 1; 3 - 2; 5 - 10; 7 - 8. 2 с. п. ф-лы, 2 ил.

Изобретение относится к автоматическому управлению исполнительными механизмами и может использоваться, например, в транспортных роботах.

Цель изобретения - повышение быстродействия.

На фиг. 1 представлена структурная электрическая схема устройства; на фиг. 2 - таблица истинности.

Устройство для определения курсового угла исполнительного механизма содержит первый (передний) 1 и второй (задний) 2 дальномеры, задающий генератор 3 и вычислитель 4. Вычислитель 4 содержит блок 5 вычитания, первый и второй квадраторы 6 и 7, сумматор 8, деквадратор 9, делитель 10, функциональный преобразователь 11.

Сущность предлагаемого способа состоит в следующем.

Производят измерения (например, локационные) с борта исполнительного механизма по двум каналам и вычисляют курсовой угол по отношению к оси ортодромии, причем измерения производят синхронно и во времени по обоим каналам определяют дальности r1 и r2, например по времени задержки отраженных локационных импульсов, а расчет угла для параллельного положения каналов измерения, расположенных нормально к продольной оси исполнительного механизма, производят по формуле = arcSin , Способ предназначен для "быстрого" вычисления ошибки курса по одному разовому замеру дальностей.

Устройство для осуществления способа работает следующим образом.

Исполнительный механизм (не показан) расположен коллинеарно положению дальномеров 1 и 2. Дальномеры 1, 2 жестко закреплены между собой на базовом расстоянии d друг от друга. По переднему фронту импульса задающего генератора 3 дальномеры 1 и 2 излучают синхронно зондирующие импульсы. Эти импульсы распространятся в параллельных друг другу направлениях.

Отражаясь от протяженной поверхности, зондирующие импульсы воспринимаются приемниками дальномеров 2 и 3. Дальномеры преобразуют времена задержек зондирующих импульсов в аналоговые электрические сигналы, адекватные измеренным расстояниям r1 и r2, которые поступают на блок 5 вычитания. На соответствующие другие входы блока 5 подаются напряжения, соответствующие величине конструктивной постоянной k1. С выхода блока 5 сигнал, равный разности входных сигналов, поступает на вход делителя 10.

На вход второго квадратора 7 заводится постоянное напряжение, например, с потенциометра (не показан), уровень которого адекватен базовому расстоянию d, умноженному на конструктивную постоянную k2. С выхода квадратора 7 снимается сигнал, амплитуда которого адекватна величине (k2d)2. Этот сигнал суммируется с сигналом, формируемым первым квадратором 6, на устройстве 8. Напряжение, амплитуда которого равна сумме амплитуд входных сигналов сумматора 8, поступает на вход деквадратора 9. На выходе деквадратора 9 формируется напряжение, равное по величине квадратному корню из входного напряжения.

На выходе делителя 10 формируется аналоговый сигнал ХI, амплитуда которого адекватна величине sin . Этот сигнал поступает на информационный вход функционального преобразования 11. На его установочные входы Х2, Х3, Х4 поступает цифровой двоичный код (например, с пульта управления).

В соответствии с таблицей истинности, приведенной на фиг. 2, можно по одному и тому же выходу устройства получить различные навигационные параметры искомой величины . Различные представления искомой величины очень удобны для автоматических навигаторов. Это измерение искомой величины в радианах, в угловых градусах, в градах и, наконец, вычисление тригонометрических функций искомой величины sin , tg , cos .

Зависимости пересчета сведены в таблицу.

(56) Винницкий А. С. Автономные радиосистемы. М. : Радио и связь, 1986, с. 286.

1. Способ определения курсового угла исполнительного механизма, включающий одновременное измерение расстояний r1 и r2 от корпуса исполнительного механизма до поверхности и вычисление курсового угла по измеренным расстояниям, отличающийся тем, что, с целью повышения быстродействия, измерение расстояний r1 и r2 производят из двух точек корпуса исполнительного механизма в параллельных направлениях, а курсовой угол рассчитывают по формуле = arcSin , где k1 и k2 - конструктивные постоянные, зависящие от размещения измерителей дальности на корпусе исполнительного механизма; d - расстояния между точками, из которых измеряют расстояния.

2. Устройство для определения курсового угла исполнительного механизма, содержащее два дальномера и вычислитель, причем выходы дальномера соединены с соответствующими входами вычислителя, отличающееся тем, что, с целью повышения быстродействия, вычислитель содержит задающий генератор, блок вычитания, первый и второй квадраторы, сумматор, деквадратор, делитель и функциональный преобразователь, выход задающего генератора соединен с установочными входами обоих дальномеров, выход первого дальномера соединен с суммирующим входом блока вычитания, выход второго дальномера соединен с вычитающим входом блока вычитания, выход которого соединен с входами делителя и первого квадратора, выход которого через сумматор и деквадратор соединен с установочным входом делителя, выход которого соединен с информационным входом функционального преобразователя, а выход второго квадратора соединен с вторым входом сумматора, первый и второй дальномеры расположены на линии, параллельной продольной оси корпуса исполнительного механизма.

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к радиотехнике и может использоваться в радиотехнических системах посадки летательных аппаратов

Изобретение относится к радионавигации

Изобретение относится к радионавигации и может быть использовано в радиотехнических системах посадки летательных аппаратов на аэродромы, размещенные в многоснежных районах

Изобретение относится к радионавигации

Изобретение относится к радионавигации

Изобретение относится к радионавигации

Изобретение относится к радионавигации

Изобретение относится к радионавигации

Изобретение относится к области радионавигации и может быть использовано в инструментальных системах посадки самолетов

Изобретение относится к системам и средствам управления воздушным движением, в частности к пилотажно-навигационному и радиотехническому оборудованию и предназначено для установки на летательных аппаратах (ЛА) и на земле в районе аэродрома для обеспечения посадки ЛА и наблюдения за ними

Изобретение относится к радиотехнике и может использоваться в системах инструментального обеспечения захода самолетов на посадку

Изобретение относится к технике связи, а именно к радиотехническому оборудованию, и может быть использовано в системах и средствах управления воздушным движением

Изобретение относится к области авиации, в частности к посадочным системам

Двухчастотный курсовой радиомаяк (КРМ) предназначен для обеспечения инструментального захода на посадку и посадки самолетов. Достигаемый технический результат - сокращение количества элементов фидерного тракта апертурного контроля КРМ за счет последовательного сложения сигналов от датчиков, а также более простая настройка устройства апертурного контроля. Указанный результат достигается за счет того, что двухчастотный курсовой радиомаяк содержит устройства сигналов узкого канала (УК) и широкого канала (ШК), линейную антенную решетку (АР) 2N излучающих элементов (ИЭ) в первом варианте или 2N+1 ИЭ во втором варианте КРМ. ИЭ расположены симметрично относительно центра АР, при этом все элементы и устройства, входящие в состав первого и второго вариантов двухчастотного курсового радиомаяка, выполнены и соединены между собой определенным образом. 2 н.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к радионавигационным системам и может быть использовано в системах обеспечения посадки летательных аппаратов, в том числе беспилотных, а также в системах обеспечения судовождения. Достигаемый технический результат - улучшение массогабаритных характеристик системы, реализующей способ, и сокращение сроков ее развертывания. Указанный результат достигается за счет того, что формируют сигнал ошибки при обеспечении вывода объекта на заданную точку без применения высоконаправленных антенн. 4 ил.

 

Наверх