Способ нейтрализации масел и жиров

 

Изобретение относится к масложировой промышленности, а именно к рафинации масел. Сущность изобретения: в способе нейтрализиции используют раствор щелочи концентрацией 20-40 г/дм3, а на границу раздела фаз вводят водный раствор оксиэтилидендифосфоновой кислоты (ОЭДФ) концентрацией 0,5 - 1,5% в количестве 0,5 - 5% к массе масла.

Изобретение относится к масложировой промышленности, а именно к рафинации масел.

Для удаления из масел и жиров свободных жирных кислот применяют различные методы щелочной рафинации (Руководство по технологии получения и переработки растительных масел и жиров. М. : ВНИИЖ, т. 2, 1973, с. 57-103).

Известен способ нейтрализации жиров (масел), в котором нерафинированный нагретый жир (масло) в капельно-жидком состоянии поступает через распылитель в горячий раствор щелочи, в котором происходят нейтрализация свободных жирных кислот и растворение мыла, что сокращает отходы нейтрального жира в соапсток и обусловливает экономичность метода (авт. св. СССР N 130139, кл. 23а, 1960).

Недостатками этого способа является невысокое качество получаемых масел и невозможность получения соапстоков высокой концентрации, а также большой расход воды.

Известен также способ рафинации жиров, в котором рафинированное масло или жир обрабатывают раствором щелочи и в щелочной раствор добавляют комплексообразующее вещество, относящееся к группе фосфоновых кислот, в количестве 100-150 г вещества на 1 т жира.

Недостатками этого способа являются следующие: невозможность использования комплексообразователя для удаления мыла из масла, необходимость дополнительной промывки масла при рафинации высококислотных тяжелорафинируемых масел, а также необходимость дополнительной обработки масла лимонной кислотой для удаления следовых количеств мыла в масле, остающихся после нейтрализации.

Наиболее близким к заявляемому является способ нейтрализации масел, включающий пропускание нагретого масла в виде капель через слой горячего водного раствора щелочи с образованием водной и масляной фаз, промывку и отделение соапстоков, при этом используют раствор щелочи с концентрацией 25-30 г/дм3, а на границу раздела фаз вводят водный раствор натриевой соли минеральной кислоты в количестве 1-10% к массе масляной фазы с концентрацией ниже порога коагуляции мыльных мицелл.

Недостатки этого способа заключаются в следующем: невозможность разрушения следов мыл, остающихся при рафинации, и необходимость обработки рафинированных масел кислотой перед сушкой; необходимость организации двухстадийной рафинации и многократной промывки при рафинировании высококислотных труднорафинируемых масел. Кроме того, образуется большое количество разбавленных соапстоков, к недостаткам относятся увеличение отходов масла при рафинации, низкая производительность установки из-за многостадийности процесса.

Авт. св. N 130139 является аналогом изобретения.

Целью изобретения являются улучшение качества масла, снижение расхода воды и получение высококонцентрированных соапстоков с пониженной вязкостью.

Это достигается тем, что используют раствор щелочи концентрацией 20-40 г/дм3, а на границу раздела фаз вводят водный раствор оксиэтилидендифосфоновой кислоты (ОЭДФ) концентрацией 0,5-1,5% в количестве 0,5-5% к массе масла.

Способ осуществляется следующим образом.

Нагретое масло пропускают в цилиндрическом резервуаре в виде капель через слой горячего раствора щелочи с концентрацией щелочи 20-40 г/дм3. В верхнюю часть нейтрализационной колонны на поверхность масла разбрызгивают раствор ОЭДФ с концентрацией 0,5-1,5% в количестве 0,5-5,0% этого раствора к массе масла. Нейтрализованный жир (масло) собираясь в верхней части аппарата, непрерывно отводится.

При пропускании нагретого масла через слой водного раствора щелочи концентрацией 20-40 г/дм3 и последующем введении на границу раздела фаз водного раствора ОЭДФ концентрацией 0,5-1,5% в количестве 0,5-5,0% к массе масла за счет совмещения процессов нейтрализации и промывки происходит удаление из масла негидратируемых форм фосфолипидов и мыла, образуются высококонцентрированные соапстоки, снижается расход воды и улучшается качество масла.

П р и м е р 1. Предварительно подогретое высокоолеиновое подсолнечное масло с кислотным числом 2,30 мг КОН/г и массовой долей фосфолипидов 0,40% вводят в цилиндрический резервуар, где находится горячий раствор щелочи (концентрация раствора щелочи 20 г/дм3). Капли масла за счет разницы плотностей масла и раствора щелочи поднимаются наверх. При прохождении через раствор щелочи происходит нейтрализация свободных жирных кислот, содержащихся в масле. В верхнюю часть аппарата через отверстия барботера вводят водный раствор ОЭДФ в количестве 0,5% к массе масла, при этом концентрация раствора ОЭДФ 0,5% . Температура процесса 70оС.

Нейтрализованное масло, собираясь в верхней части резервуара, непрерывно отводится через патрубок.

Получаемое после нейтрализации масло имеет кислотное число 0,28 мг КОН/г, содержание мыла в масле 0% . Отходящий мыльно-щелочной раствор (соапсток) содержит жира 11% , где нейтрального жира 10% , жирных кислот 1% , расход воды составляет 100 кг/г масла.

П р и м е р 2. Предварительно подогретое высокоолеиновое подсолнечное масло с кислотным числом 2,30 мг КОН/г и массовой долей фосфолипидов 0,40% вводят в цилиндрический резервуар, где находится горячий раствор щелочи (концентрация раствора 30 г/дм3). Капли масла за счет разницы плотностей масла и раствора щелочи, поднимаются вверх. При прохождении через раствор щелочи происходит нейтрализация свободных жирных кислот, содержащихся в масле.

В верхнюю часть аппарата через отверстия барботера вводят водный раствор ОЭДФ в количестве 2,5% к массе масла, при этом концентрация раствора ОЭДФ 1,0% . Температура процесса 80оС.

Нейтрализованное масло, собираясь в верхней части резервуара, непрерывно отводится через патрубок.

Получаемое после нейтрализации масло имеет кислотное число 0,26 мг КОН/г, содержание мыла в масле 0% . Отходящий мыльно-щелочной раствор (соапсток) содержит жира 15% , где нейтрального жира 13% , жирных кислот 2% , расход воды составляет 90 кг/г масла.

П р и м е р 3. Предварительно подогретое высокоолеиновое подсолнечное масло с кислотным числом 2,30 мг КОН/г и массовой долей фосфолипидов 0,40% вводят в цилиндрический резервуар, где находится горячий раствор щелочи (концентрация раствора 40 г/дм3). Капли масла за счет разницы плотностей масла и раствора щелочи поднимаются вверх. При прохождении через раствор щелочи происходит нейтрализация свободных жирных кислот, содержащихся в масле. В верхнюю часть аппарата через отверстия барботера вводят водный раствор ОЭДФ в количестве 5,0% к массе масла, при этом концентрация раствора ОЭДФ 1,5% . Температура процесса 90оС. Нейтрализованное масло, собираясь в верхней части резервуара, непрерывно отводится через патрубок.

Полученное после нейтрализации масло имеет кислотное число 0,24 мг КОН/г, содержание мыла в масло 0% . Отводящий мыльно-щелочной раствор (соапсток) содержит жира 20% , жирных кислот 17% , расход воды составляет 80 кг/г масла.

В известном способе при нейтрализации масла раствором щелочи концентрацией 15 г/л кислотное число рафинированного масла 0,25 мг КОН/г, содержание мыла в масле 0,03% , содержание общего жира в соапстоке 10% , где нейтрального жира 8% , а жирных кислот 2% , расход воды 300 кг/т масла.

Из приведенных примеров видно, что содержание мыла в нейтрализованном масле в результате реализации предложенного способа колеблется в пределах от 0,00 до 0,01% по сравнению с прототипом - 0,03% (в три раза ниже), а полученный соапсток имеет более высокую концентрацию общего жира и лучшее состояние нейтрального жира к жирным кислотам по сравнению с прототипом. Расход воды также снижается в 3-4 раза. (56) Авторское свидетельство СССР N 130139, кл. С 11 В 3/06, 1960.

Формула изобретения

СПОСОБ НЕЙТРАЛИЗАЦИИ МАСЕЛ И ЖИРОВ, предусматривающий пропускание нагретого масла в виде капель через слой горячего водного раствора щелочи с образованием водной и масляной фаз, отличающийся тем, что используют раствор щелочи концентрацией 20 - 40 г/дм3 и на границу раздела фаз вводят водный раствор оксиэтилидендифосфоновой кислоты концентрацией 0,5 - 1,5% в количестве 0,5 - 5,0% к массе масла.



 

Похожие патенты:

Изобретение относится к масложировой промышленности, а именно к рафинации масел

Изобретение относится к масложировой промышленности и может быть использовано в процессе рафинации жиров и масел

Изобретение относится к масложировой промышленности, в частности к способам очистки растительных масел от свободных жирных кислот и восков

Изобретение относится к масложировой промышленности, в частности к разложению мыла при очистке нейтрализованного жира

Изобретение относится к масложировой промышленности и касается рафинации жиров и масел

Изобретение относится к оборудованию для масложировой промышленности и может быть использовано при окончательной обработке растительных масел

Изобретение относится к пищевой и химической отраслям промышленности, преимущественно масло-жировой, и может быть использовано при управлении непрерывным процессом щелочной нейтрализации свободных жирных кислот растительных масел и жиров и разделения фаз в мыльно-щелочной среде

Изобретение относится к масложировой промьшшенности, а именно к способам очистки нейтрализованного жира, и направлено на упрощение способа и экономию реагентов

Изобретение относится к масложировой промьшшенности и направлено на снижение потерь нейтрального жира

Изобретение относится к масло-жировой промышленности, в частности к рафинации жиров и масел

Изобретение относится к жироперерабатывающей промышленности, в частности к производству пищевого растительного масла

Изобретение относится к пищевой промышленности и предназначено для экстракции-нейтрализации растительного масла водным раствором спирта

Изобретение относится к области переработки жиров, в частности к электрохимической обработке жира, преимущественно рыбного

Изобретение относится к масложировой промышленности

Изобретение относится к оборудованию для масложировой промышленности и может быть использовано в мясомолочной, химической и нефтяной промышленности
Изобретение относится к технологии жиров и может быть использовано при очистке растительных масел. Способ предусматривает введение в масло отбельной глины, выдерживание, разделение фаз. Перед внесением сорбента масло нагревают до температуры 90-120°C. Выдержку осуществляют при остаточном давлении 0,2×10-3 МПа в течение 35-50 минут. Отбельную глину предварительно обрабатывают 25%-ным спиртовым раствором щелочи в количестве 5-25% к массе отбельной глине с испарением спирта методом высушивания. Отбельную глину используют в количестве 1-3% к массе масла. Разделение проводят путем фильтрации. Изобретение позволяет снизить содержание фосфолипидов, массовую долю хлорофиллов и свободных жирных кислот, снизить значение цветного и кислотного чисел, но при этом в масле сохраняются воски и обеспечивается максимальный выход триацилглицеридов. 2 табл.

Изобретение относится к безопасному для окружающей среды «зеленому» способу непрерывной очистки триацилглицеролов с использованием порошкообразного, гранулированного или прессованного адсорбента, который применяют или в процессе химической, или в процессе физической очистки пищевых масел и жиров, каждый из которых обычно используется для очистки триацилглицеролов. Способ очистки масел растительного и животного происхождения включает следующие стадии: а) обрабатывают сырой триацилглицерол с использованием одной или более адсорбционных колонок, содержащих адсорбентный материал для удаления одной или более примесей из сырого триацилглицерола, причем указанный триацилглицерол непрерывно протекает через одну или более колонок; б) осуществляют регенерацию адсорбентного материала растворителем, содержащим кислоту, для удаления адсорбированных примесей из адсорбентного материала; в) и используют адсорбентный материал на стадии (а), причем примеси включают одно или более фосфорных соединений, мыла, металлы, свободные жирные кислоты, ароматические соединения, пахучие соединения, красящие соединения, хлорофилл и другие примеси, которые уменьшают стабильность конечного триацилглицерола. 37 з.п. ф-лы, 7 ил., 4 табл., 2 пр.

Изобретение относится к комплексному способу получения метилового эфира ятрофы (JME) и сопутствующих продуктов из семян ятрофы, находящихся в семенных коробочках и содержащих 1,06% свободных жирных кислот (FFA), включающему следующие стадии: (i) механическое вышелушивание семян ятрофы из семенных коробочек в шелушильной машине для получения оболочек семенных коробочек ятрофы и семян ятрофы; (ii) отжим масла ятрофы, получение масличного жмыха ятрофы, содержащего 4-6% азота, и отработанного масличного шлама из семян ятрофы, полученных на стадии (i), с использованием пресса для отжима масла; (iii) нейтрализация масла ятрофы, полученного на стадии (ii), добавляемым основанием; (iv) переэтерификация одной части нейтрализованного масла ятрофы, полученного на стадии (iii), со спиртом и основанием при перемешивании в течение 10-20 минут и разделение неочищенного глицеринового слоя GL1 и неочищенного метилового эфира ятрофы (JME); (v) трехкратная промывка неочищенного JME, полученного на стадии (iv), слоем чистого глицерина с отделением трех слоев нечистого глицерина (GL2, GL3 и GL4), содержащих метанол и KOH, с получением JME, промытого глицерином (JME-G3W); (vi) очистка JME-G3W, полученного на стадии (v), для удаления загрязнений щелочными металлами; (vii) обработка части оставшегося нейтрализованного масла, полученного на стадии (iii), слоями глицерина GL5 (GL1+GL2+GL3), полученными на стадиях (iv) и (v), с получением JME и слоя глицерина GL6; (viii) разделение JME и слоя глицерина GL6, полученного на стадии (vii); (ix) обработка слоя глицерина GL6, полученного на стадии (viii), оставшейся частью нейтрализованного масла для удаления метанола с получением JME и слоя глицерина GL7; (x) разделение JME и слоя глицерина GL7, полученного на стадии (ix); (xi) использование слоя глицерина GL7, полученного на стадии (x), непосредственно для производства полигидроксиалканоатов (PHAs) или для нейтрализации щелочи серной кислотой с получением чистого глицерина и кубового остатка GL8; (xii) объединение JME-G3W, полученного на стадии (vi), и JME, полученного на стадиях (viii) и (x), с получением комплексного метилового эфира; и (xiii) переэтерификация комплексного метилового эфира, полученного на стадии (xii), с метанольным раствором KOH для получения чистого метилового эфира ятрофы (биодизеля), содержащего 0,088% общего глицерина и 0,005% свободного глицерина. Изобретение также относится к комплексному способу получения метилового эфира ятрофы (JME) и сопутствующих продуктов из семян ятрофы, включающему следующие стадии: a) осуществление вышеуказанных стадий (i) и (ii); b) брикетирование оболочек семенных коробочек ятрофы, полученных на стадии (i), в брикетировочной машине с добавлением отработанного масличного шлама, полученного на стадии (ii), для получения брикетов ятрофы с плотностью 1,05-1,10 г/см3 в качестве сопутствующего продукта; c) гидролиз масличного жмыха ятрофы, имеющего 4-6% азота и полученного на стадии (ii), кислотами H3PO4 и H2SO4 для получения гидролизата масличного жмыха ятрофы (JOCH) в качестве сопутствующего продукта; и d) осуществление стадий (iii)-(xiii). Изобретение предоставляет более простой и более энергетически эффективный способ получения метилового эфира жирных кислот (биодизеля), интегрированный с выгодной утилизацией побочных продуктов, таких как семенные коробочки, обезжиренный жмых и поток неочищенного глицерина. 2 н. и 11 з.п. ф-лы, 7 ил., 7 табл., 13 пр.
Наверх