Устройство для испытаний на случайную вибрацию

 

Изобретение позволяет повысить точность формирования заданного спектра случайной вибрации и расширить класс испытуемых изделий путем уменьшения влияния нелинейности тракта вибровозбудитель - изделие. Сущность: каждый канал формирователя содержит три управляемых канала и канальный сумматор. Контроль нелинейности осуществляют путем измерения функции когерентности сигналов на входе и выходе тракта вибровозбудитель - изделие сначала при воздействии на тракт сигналами малого уровня, затем при сигнале заданного уровня и сравнения значений функции когерентности, полученных в двух режимах в каждой подполосе. В случае их различения в подполосе какого-либо подканала формирователя уменьшают заданный уровень в этой подполосе, но при этом одновременно увеличивают уровни в других подполосах данного канала формирователя так, что средний уровень спектра в данной полосе соответствует заданному. 6 ил.

Изобретение относится к вибрационным испытаниям, а именно к устройствам для испытания на случайную вибрацию.

Известно устройство для формирования спектра широкополосных случайных вибраций, содержащее параллельные каналы формирования, каждый из которых включает генератор шума, полосовой фильтр с регулируемой добротностью, регулируемый аттенюатор, выход которого подключен к управляющему входу полосового фильтра, а вход - к выходу фильтра, и регулируемый усилитель, второй выход которого через функциональный преобразователь подключен к управляющему входу аттенюатора. Выходы всех усилителей подключены к cумматору, выход которого через усилитель мощности подключен к входу возбудителя колебаний. Устройство содержит также вибродатчик, выход которого подключен к входу цепей обратной связи, каждая из которых включает полосовой анализирующий фильтр, измеритель дисперсии и блок сравнения, выход которого подключен к управляющему входу регулируемого усилителя [1] .

Однако данное устройство позволяет формировать заданный спектр вибраций только при линейной амплитудной характеристике вибратора в рабочем диапазоне частот. При наличии нелинейности вибротракта в контрольной точке испытуемого изделия возникают неуправляемые спектральные составляющие, которые искажают заданный спектр вибрации. Это приводит к дополнительной погрешности имитации, в отдельных случаях к полному нарушению управляемости формирующих каналов и невозможности проведения испытаний.

Прототипом предлагаемого изобретения является устройство [2] , содержащее параллельные каналы формирования колебаний, каждый из которых включает генератор шума, полосовой фильтр с регулируемой добротностью, регулируемый аттенюатор, выход которого подключен к управляющему входу полосового фильтра, а вход - к выходу фильтра, и регулируемый усилитель, второй выход которого через функциональный преобразователь подключен к управляющему входу аттенюатора. Выходы всех усилителей подключены к сумматору, выход которого через усилитель мощности подключен к входу возбудителя механических колебаний. Устройство содержит также вибродатчик, каналы обратной связи, каждый из которых включает полосовой анализирующий фильтр, измеритель дисперсии, схему сравнения, выход которой подключен к управляющему входу соответствующего регулируемого усилителя, ключ, вход которого подключен к выходу вибродатчика, а выход - к входам каналов обратной связи, последовательно соединенные коммутатор, коррелометр, АЦП, блок быстрого Фурье-преобразования, первый блок памяти, вычислитель, первый выход которого подключен к входу второго блока памяти, второй выход - к входу третьего блока памяти, схему сравнения, первый вход которой подключен к выходу второго блока памяти, второй вход - к выходу третьего блока памяти, выходы схемы сравнения подключены к входам задатчика режима, выходы которого подключены к вторым входам схем сравнения каналов обратной связи, а также блок управления, первый выход которого подключен к управляющему входу ключа, второй выход - к управляющему входу коммутатора, третий выход - к управляющим входам второго и третьего блоков памяти, четвертый выход - к управляющему входу первого блока памяти, пятый выход - к вторым управляющим входам регулируемых усилителей, шестой выход - к управляющему входу задатчика режима.

Такое устройство позволяет проводить испытания на случайную вибрацию при наличии нелинейности вибрационного тракта. Однако в тех частотных полосах, где проявляется нелинейность вибрационного тракта, не удается достичь требуемого уровня вибраций. Это приводит к недоиспытанию объекта в данной частотной полосе, что ухудшает качество испытаний.

Целью изобретения является повышение точности вибрационных испытаний и расширение класса испытуемых изделий путем уменьшения влияния нелинейности тракта вибровозбудитель-изделие.

Поставленная цель достигается тем, что в устройство, содержащее последовательно соединенные формирователь, каждый канал которого содержит генератор шума, полосовой фильтр и регулируемый усилитель, общий сумматор, усилитель мощности, вибровозбудитель механических колебаний, вибродатчик, коммутатор, первый вход которого соединен с вибродатчиком, второй вход - с выходом усилителя мощности, коррелятор, аналого-цифровой преобразователь и блок быстрого преобразования Фурье, один выход которого соединен с первым входом первого блока памяти, выход которого соединен с первым вычислителем, первый и второй выходы которого соединены соответственно с первыми входами второго и третьего блоков памяти, выходы которых соединены с входами первой схемы сравнения, выходы которой подключены к задатчику режима, у которого выход подключен к первому входу второй схемы сравнения, выходы которой соединены с соответствующими управляющими входами регулируемых усилителей формирователя, вторые выходы блока управления соединены с третьими управляющими входами формирователями, третий выход - с вторым входом первого блока памяти, четвертый выход - с вторыми входами второго и третьего блоков памяти, пятый выход - с управляющим входом задатчика режима, шестой выход - с управляющим входом коммутатора, введен второй вычислитель, вход которого соединен с другим выходом блока быстрого преобразования Фурье, выходы второго вычислителя соединены с вторыми входами второй схемы сравнения, управляющий вход второго вычислителя соединен с первыми выходами блока управления, кроме того, каждый канал формирователя содержит три управляемых подканала, канальный сумматор.

Контроль нелинейности осуществляется путем измерения функции когерентности сигналов на входе и выходе тракта вибровозбудитель - изделие. Устройство имеет два режима работы. В первом режиме измеряются и запоминаются функции когерентности при воздействии на тракт сигнала малого уровня. Во втором режиме формируется сигнал возбуждения по заданному уровню случайной вибрации при одновременном измерении функции когерентности и сравнении ее со значением, полученным в первом режиме. В случае их различия в одноименных частотных подполосах уменьшают заданный уровень в этих подполосах, в противном случае настройку осуществляют обычным образом. Тем самым исключают влияние нелинейности тракта вибровозбудитель-изделие и устраняют возможность разрушения испытуемого изделия из-за появления неуправляемых сигналов в каналах формирования, вызванных нелинейными искажениями.

Предложенное техническое решение соответствует критерию существенные отличия.

На фиг. 1 дана блок-схема устройства для испытания на случайную вибрацию; на фиг. 2 и 3 - графики спектров вибрации; на фиг. 4 - блок-схема управления; на фиг. 5 и 6 - эпюры работы блока управления и таблица вырабатываемых блоком управления кодов и их функций.

Устройство для испытания на случайную вибрацию содержит последовательно соединенные параллельные каналы формирователя 1, каждый подканал 2 которого включает генератор шума 3, полосовой фильтр 4, регулируемый усилитель 5, второй вход которого подключен к второй схеме сравнения 22, третий вход соединен с вторым выходом блока управления 23. Выходы усилителей 5 подканалов подключены к сумматору 6 подканала, выход которого подключен к общему сумматору 7. Устройство содержит также последовательно соединенные усилитель мощности 8, вибровозбудитель 9 механических колебаний и вибродатчик 10, коммутатор 11, первый вход которого соединен с выходом вибродатчика 10, а второй - с выходом усилителя мощности 8, последовательно соединенные коррелятор 12, аналого-цифровой преобразователь (АЦП) 13 и блок 14 быстрого (БПФ) преобразования Фурье, первый выход которого соединен с входом второго вычислителя 15, а второй выход - с первым входом блока памяти 16, выход которого подключен к входу первого вычислителя 17, первый и второй выходы которого соединены с первыми входами блоков памяти 18 и 19, выходы которых соединены с входами первой схемы сравнения 20, выходы которой подключены к входам задатчика режима 21, выходы которого соединены с входами второй схемы сравнения 22, другие входы которой соединены с выходами второго вычислителя 15. Выходы второй схемы сравнения 22 соединены с вторыми управляющими входами регулируемых усилителей 5 подканалов 2 формирования. Первый, третий и шестой выходы блока управления 23 соответственно соединены с управляющим входом второго вычислителя 15, вторым входом первого блока памяти 16, вторыми входами второго и третьего блоков памяти 18 и 19, управляющим входом задатчика режима 21 и управляющим входом коммутатора 11. Вторые выходы блока управления 23 соединены соответственно с третьими управляющими входами регулируемых усилителей 5 подканалов формирования.

Устройство работает следующим образом.

С второго выхода блока управления 23 на третьи управляющие входы регулируемых усилителей подканалов формирования поступает сигнал управлении, у последних выставляется коэффициент усиления, соответствующий малому уровню выходного сигнала. Случайный сигнал с непрерывным спектром в рабочем диапазоне частот с генератора шума 3 поступает через полосовой фильтр 4 и регулируемый усилитель 5 на канальный сумматор 6. С выхода сумматора 6 суммарный сигнал трех подканалов формирователя поступает на один из входов общего сумматора 7. С выхода последнего случайный сигнал, являющийся суммой сигналов каналов формирователя 1, поступает на вход усилителя мощности 8, который управляет вибровозбудителем 9 механических колебаний. Механические колебания преобразуются вибродатчиком 10 в электрический сигнал, который затем поступает на первый вход коммутатора 11, на второй вход которого поступает сигнал с выхода усилителя мощности 8. По управляющим сигналам, поступающим с шестого выхода блока управления 23, коммутатор 11 последовательно подключает к входам коррелятора 12 выход усилителя мощности 8 и вибродатчика 10. Сигнал с выхода коррелятора 12 описывает соответственно корреляционную функцию сигнала на входе и выходе тракта вибровозбудитель-изделие и взаимную корреляционную функцию сигналов на входе и выходе тракта вибровозбудитель-изделие. Этот сигнал, преобразованный в АЦП 13 в цифровую форму, поступает на вход блока 14 быстрого преобразования Фурье, в котором вычисляются спектры на входе и выходе тракта вибровозбудитель-изделие и взаимный спектр сигналов на входе и выходе тракта. Значение спектров и взаимный спектр на входе и выходе тракта вибровозбудитель-изделие заносят в первый блок памяти 16 по адресу, выставляемому на его управляющем входе блоком управления 23. Время подключения сигналов к входам коррелятора 12 определяется суммарным временем преобразования коррелятора 12, АЦП 13, блока 14 и задается блоком управления 23. После записи измеренных спектров в первый блок памяти 16 в первом вычислителе 17 производится вычисление функции когерентности в каждой подполосе ( ij) формирования по формуле 2(ij)= ; ij-i-я подполоса в j-полосе формирования; Gx(ij) - спектр сигнала на входе тракта вибровозбудитель-изделие в подполосе ij; Gy( ij) - спектр сигнала на выходе тракта вибровозбудитель-изделие в подполосе ij; Gxy( ij) - взаимный спектр сигналов на входе и выходе тракта вибровозбудитель-изделие в подполосе ij.

Данные о спектрах поступают в первый вычислитель 17 из первого блока памяти 16, а результаты записываются с выхода первого вычислителя 17 во второй блок памяти 18 по адресу, подаваемому с четвертого выхода блока управления 23, в виде отсчетов 2() во всем рабочем диапазоне частот. С первого выхода блока БПФ 14 сигнал в виде отсчетов, соответствующих спектральной плотности сигнала на выходе вибродатчика 10, поступает на вход второго вычислителя 15, на управляющий вход которого поступает сигнал управления на вычисление дисперсии в подполосах ij по формуле q(ij) = G()d, Gy()= Gnrect (n), где rect (n)= Gn - отсчеты функции Gy( ).

Затем полученные значения дисперсии q(ij) сравниваются в схеме сравнения 22 с заданными дисперсиями qзад ( ij), поступающими с задатчика режима 21. Сигналы, образуемые на выходе схемы сравнения 22, соответствующие разнице между измеренными дисперсиями q(ij) и заданными дисперсиями qзад( ij) поступают на вторые входы регулируемых усилителей 5 и изменяют коэффициенты усиления так, чтобы разница между q(ij) и qзад ( ij) уменьшилась до минимально достижимого значения qmin. Минимальная разница между q( ij) и qзад( ij), которая достигается в контуре управления при регулировании коэффициента усиления и усилителя 5, определяется суммарным коэффициентом усиления цепи обратной связи, образуемой цепью: вибродатчик 10, коррелятор 12, АЦП 13 и БПФ 14. При равенстве измеренной дисперсии и заданной дисперсии q(ij), qзад( ij) в некоторой частотной подполосе ij процесс настройки в данной частотной подполосе ij прекращается. Подобный процесс настройки продолжается до тех пор, пока процесс установления заданных дисперсий вибраций не осуществится во всех частотных подполосах. По окончании настройки система готова к выходу на заданный уровень вибрации.

Для вывода системы к требуемому уровню вибрации производится увеличение коэффициента усиления регулируемых усилителей 5 в каждой подполосе ij на величину Kij. По управляющему сигналу, поступающему с пятого выхода блока управления 23, на управляющий вход задатчика режима 21 подается команда на последовательное (пошаговое) дискретное приближение к требуемому уровню вибраций. Измененное значение уровня заданной дисперсии в каждой подполосе ij поступает в схему сравнения 22, где сравниваются значения дисперсии q( ij), поступающие с второго вычислителя 15, с заданной (измененной) дисперсией qзад( ij). Разность получаемых значений между q( ij) и qзад( ij) на выходе второй схемы сравнения 22 поступает на вторые управляющие входы регулируемых усилителей 5 и изменяет коэффициенты усиления так, чтобы разница между q( ij) и qзад( ij), стремилась к qmin. Затем в задатчике режима 21 происходит новое увеличение и весь процесс повторяется до выхода системы на требуемый уровень вибраций.

В процессе вывода системы на заданный уровень вибраций (на каждом шаге см. фиг. 2 дискретного приближения) производится оценка новой функции когерентности ij(f) для каждой полосы, т. е. производится вычисление нового значения функции когерентности ij(f) при каждом увеличении коэффициента усиления на Кij. Процесс вычисления ij(f) производится по приведенному порядку. Результаты вычисления на выходе первого вычислителя 17 записываются в третий блок памяти 19 по адресу, подаваемому с четвертого выхода блока управления 23. Хранящиеся во втором 18 и третьем 19 блоках памяти значения функций когерентности ij(f) поступают в первую схему сравнения 20, где производится сравнение полученного значения функции когерентности ij(f) при увеличенном значении коэффициента усиления регулируемых усилителей на Кij, записанного в третьем блоке памяти 19, со значением функции когерентности зад(f), вычисленным в режиме малого уровня сигнала возбуждения, записанного во втором блоке памяти 18. Вычисление функции когерентности ij(f) производится в каждой подполосе и также осуществляется сравнение.

При сравнении в первой схеме сравнения 20 двух функций когерентности задij(f), вычисленная при малом сигнале возбуждения, когда не связываются нелинейность тракта вибровозбудитель-изделие, и ij(f), вычисленная в процессе выхода на заданный уровень вибрации на каждом шаге приращения коэффициента усиления Кij, возможны два варианта результатов сравнения: а) На очередном шаге приращения коэффициентов усиления нелинейность тракта вибровозбудитель-изделие не проявляется и значение функции когерентности в каждой подполосе ij(f) не изменяется по сравнению с функцией когерентности задij(f), вычисленной на малом уровне сигнала возбуждения, т. е. выполняется условие задij(f) - ij(f) задij(f)+ , где - погрешность измерения, определяющая поле допуска. Поле допуска определяется из конкретных условий испытаний объекта.

В случае непроявления нелинейности тракта вибровозбудитель-изделие режим выхода на заданный уровень вибрации осуществляется по приведенному порядку.

б) На очередном шаге приращения коэффициентов усиления Кijпроявляется нелинейность тракта вибровозбудитель-изделие и значение функции когерентности в определенной подполосе ij(f) отлично по сравнению с функцией когерентности задij(f), вычисленной на малом уровне сигнала возбуждения, т. е. выполняется условие ij(f) задij(f )- .

В данной подполосе, где проявляется нелинейность, происходит остановка увеличения коэффициента усиления соответствующего регулируемого усилителя 5 (см. фиг. 3).

На фиг. 3 представлен случай проявления нелинейности тракта вибровозбудитель-изделие в подполосе i,2 полосы i. В этом случае коэффициент усиления регулируемого усилителя 5 подполосы i,2 не достигает заданного значения коэффициента усиления. Недостающее значение коэффициента усиления i,2 = (Кi,2-Ki.2задан) компенсируется соответствующим приращением i,j коэффициентов усиления регулируемых усилителей 5 подполосы i,1 и i,3, которое определяется из условия ij= , где j= 1 и 3.

В этом случае в полосе i выполняется требование равенства дисперсий заданной вибрации и дисперсии возбуждаемой вибрации, т. е. выполняется условие
qij(ij)= q(i).

При этом неравномерность i спектра возбуждаемой вибрации в полосе i не должна превышать допустимое значение iq, т. е. должно выполняться условие i iq, где iq определяется из конкретных условий испытаний (см. фиг. 2, в).

Предлагаемое устройство было реализовано в процессе выполнения НИР. Значительная часть устройства реализована из стандартных узлов и блоков, широко используемых в аппаратуре для испытания на случайную вибрацию. Так, например, реализация генератора шума 3 базируется на рекомендациях книги Жовинского В. Н. (Жовинский В. Н. Генерирование шумов для исследования автоматических систем. М. : Энергия, 1968) с использованием стандартной схемотехники. Полосовой фильтр 4, канальный и общий сумматоры 6 и 7 реализованы по стандартным схемам на базе операционных усилителей серии К 140УД6 или К 140УД7 (Гутников В. С. Применение операционных усилителей в измерительной технике). Регулируемый усилитель 5 выполнен на микросхеме ЦАП К 572 ПА2 или КР 572 ПА2, аналого-цифровой преобразователь 13 - на микросхеме К 572 ПВ1 (Федорков Б. Г. и Телец В. А. Микросхемы ПАЦ и АЦП: Функционирование, параметры, применение. М. : Энергоатомиздат, 1990). Блок 14 быстрого Фурье преобразования - на микропроцессоре К 1815 ВФЗ (Басманов А. С. и Широков Ю. Ф. Микропроцессоры и однокристальные микроЭВМ: Номенклатура и функциональные возможности. -Под редакцией док. тех. наук В. Г. Домрачева. М. : Энергоатомиздат, 1988, с. 122). Коммутатор 11 можно реализовать на миркосхемах К172КТ1 или К561КТЗ (Шило В. Л. Популярные цифровые микросхемы. М. : Радио и связь, 1987). Коpрелятор 12 - на основе функциональных схем, приведенных в кн. Мирского (Мирский Г. Я. Характеристики стохастической возможности и их измерение. М. : Энергоиздат, 1982).

Блоки памяти 16,18 и 19 выполнены на базе микросхемы серии К 565 РУ5 (Лебедев О. Н. Микросхемы памяти и их применение М. : Радио и связь, 1990); схемы сравнения 20 и 22 выполнены на базе цифровых компараторов - микросхемы К 555 СП1 (Шило В. Л. Популярные цифровые микросхемы. М. : Радио и связь, 1987). Вычислители 15 и 17 - на базе персональных ЭВМ типа ДВК-3. Задатчик режима 21 выполнен на основе цифровых элементов памяти К 155 РУ2. В качестве усилителя мощности 8, вибровозбудителя 9 и вибродатчика 10 используются вибростенд типа ВЭДС-100 с предусилением и вибродатчиком ИС-318.

Блок управления выполнен на микросхеме 155 серии, на фиг. 4 приведена блок-схема блока управления. Блок управления вырабатывает управляющие сигналы в виде кодов, приведенных в таблице фиг. 6, а на фиг. 5 показаны эпюры работы блока управления в первом режиме (режиме малого сигнала).

(56) 1. Авторское свидетельство СССР N 913095, кл. G 01 М 7/00, 1981.

2. Авторское свидетельство СССР N 1427194, кл. G 01 M 7/00, 1988.


Формула изобретения

УСТРОЙСТВО ДЛЯ ИСПЫТАНИЙ НА СЛУЧАЙНУЮ ВИБРАЦИЮ, содержащее N-канальный формирователь, последовательно соединенные сумматор, усилитель мощности, вибровозбудитель механических колебаний, вибродатчик, коммутатор, коррелятор, аналого-цифровой преобразователь, блок быстрого преобразования Фурье, первый блок памяти и первый вычислитель, второй и третий блок памяти, первые входы которых соединены соответственно с первым и вторым выходами первого вычислителя, последовательно соединенные первую схему сравнения, задатчик режима и вторую схему сравнения, блок управления, первый выход которого соединен с управляющим входом задатчика режима, второй выход - с вторым входом первого блока памяти, третий выход - с вторыми входами соответственно второго и третьего блоков питания, четвертый выход - с управляющим входом коммутатора, третий вход которого соединен с выходом усилителя мощности, второй выход - с вторым входом коррелятора, входы первой схемы сравнения соединены соответственно с выходами второго и третьего блоков памяти, отличающееся тем, что, с целью повышения точности вибрационных испытаний и расширения эксплуатационных возможностей путем уменьшения влияния нелинейности тракта вибровозбудитель - изделие, оно снабжено вторым вычислителем, первый вход которого соединен с выходом блока быстрого преобразования Фурье, второй вход - с пятым выходом блока управления, а выход - с вторым входом второй схемы сравнения, каждый из N каналов формирователя выполнен в виде трех управляемых подканалов и дополнительного сумматора, входы которого соединены с выходом каждого из подканалов, а выход - с соответствующим N-м входом сумматора, каждый из подканалов выполнен в виде последовательно соединенных генератора шума, полосового фильтра и регулируемого усилителя, выход которого является выходом каждого из подканалов, вторые входы регулируемых усилителей каждого из подканалов объединены и соединены с выходом второй схемы сравнения, третьи входы регулируемых усилителей объединены и соединены с шестым выходом блока управления.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для измерения параметров вибрации и шума

Изобретение относится к контролю качества сборки герметичных хладоновых компрессоров, а именно к способам контро ля шума

Изобретение относится к измерительной технике и может быть использовано для диагностики в процессе эксплуатации технического состояния механизмов, в том числе удаленных от аппаратуры диагностики

Изобретение относится к технике акустических измерений

Изобретение относится к способам измерения параметров физических полей, предпочтительно динамических по характеру, например сейсмических, электрических магнитных, тепловых и т.п

Изобретение относится к приборостроению и может быть использовано для измерения шума, например, при диагностировании различных механизмов и машин

Изобретение относится к виброизмерительной технике

Изобретение относится к деталям машин и может быть использовано для виброакустической диагностики передач зацеплением приводов машин, применяемых в машиностроительной, металлообрабатывающей, станкостроительной, авиационной промышленности и других
Наверх