Стабилизатор постоянного напряжения с защитой

 

Использование: в источниках вторичного электропитания РЭА. Сущность изобретения: стабилизатор напряжения с защитой содержит последовательно включенные в силовую цепь датчик тока 1 и регулирующий транзистор 2, составной транзистор 3 и защитный транзистор 4. Новым в устройстве является то, что измерение тока нагрузки стабилизатора производится дифференциальным усилителем 12 с помощью измерительной цепи, образованной введенными в стабилизатор двумя делителями напряжения 5, 8 и датчиком тока 1, причем второй делитель напряжения 8 подключен к компенсирующему резистору 11. В результате порог срабатывания защиты по току не зависит от изменения коэффициента усиления регулирующего транзистора 2, что позволяет повысить функциональную надежность стабилизатора напряжения. 2 ил.

Изобретение относится к электротехнике и может быть использовано в источниках вторичного электропитания радиоэлектронной аппаратуры.

Целью изобретения является повышение функциональной надежности, что достигается повышением точности и стабильности порога срабатывания защиты по току.

На фиг. 1 представлена электрическая схема стабилизатора напряжения с защитой; на фиг. 2 - эквивалентная схема измерительной цепи схемы защиты.

Стабилизатор постоянного напряжения с защитой содержит последовательно включенные в силовую шину (Uвх) между входным и выходным выводами датчик тока 1 и регулирующий транзистор 2, составной транзистор 3, эмиттером подключенный к базе регулирующего транзистора 2, защитный транзистор 4, эмиттером подключенный к точке соединения эмиттера регулирующего транзистора 2 и датчика тока 1, а коллектором к базе составного транзистора 3. Параллельно входу стабилизатора напряжения до датчика тока 1 подключен первый делитель напряжения 5, состоящий из резисторов 6, 7 первым резистором первого делителя 6 подключенный ко входу датчика тока 1, а вторым резистором первого делителя 7 - к общему проводу, к выходу датчика тока 1 подключен второй делитель напряжения 8, состоящий из резисторов 9, 10, первым резистором второго делителя 9, причем второй резистор второго делителя 10 подключен к компенсирующему резистору 11, к которому подключен коллектор составного транзистора 3. Делители напряжения 5, 8 в совокупности с датчиком тока 1 и компенсирующим резистором 11 образуют измерительную цепь схемы защиты (см. фиг. 2). К средним выводам делителей 5 и 8 (на фиг. 2 не обозначены) подключены входы дифференциального усилителя 12 (Uдф), выход которого соединен с базой защитного транзистора 4. Стабилизатор постоянного напряжения начинает работать при подаче напряжения питания на выходные шины (Uвх). Входное напряжение через датчик тока 1 поступает на эмиттер регулирующего транзистора 2, который в зависимости от величины сигнала от усилителя постоянного тока (схема сравнения и УПТ в схеме не показаны), усиленного составным транзистором 3, передает его на выход стабилизатора. Кроме того, входное напряжение делится первым делителем напряжения 5 и подается на инверсный вход дифференциального усилителя 12. На прямой вход дифференциального усилителя 12 подается напряжение со второго делителя напряжения 8, в верхнее плечо которого введено падение напряжения на датчике тока 1, а в нижнее - падение напряжения на компенсирующем резисторе 11. В результате при повышении тока нагрузки напряжение, снимаемое с выхода второго делителя напряжения 8, будет уменьшаться под действием падения напряжения на датчике тока 1, а под действием падения напряжения на компенсирующем резисторе 11 - увеличиваться. Ток через компенсирующий резистор 11 определяется током базы регулирующего транзистора 2, который является источником нестабильности порога срабатывания защиты по току, поэтому компенсироваться будет только составляющая тока через датчик тока 1, вызывающая нестабильность. Номиналы элементов выбраны таким образом, что суммарное напряжение на выходе второго делителя 8 будет уменьшаться и при достижении им величины, равной напряжению, снимаемому с выхода первого делителя 5, произойдет срабатывание защиты.

При этом через датчик тока I протекает сумма тока нагрузки (Iн) и тока базы (Iб) регулирующего транзистора 2, создавая на нем падение напряжения UR1 = R1. (Iн + Iб) = R1.Iн + R1.Iн/h21э (1) где h21э - коэффициент усиления регулирующего транзистора 2.

Из (1) видно, что Iб является источником погрешности, а вследствие изменения h 21э под воздействием различных ВВФ и источником нестабильнности порога срабатывания защиты по току. Для уменьшения этой нестабильности второй делитель напряжения подключен к компенсирующему резистору 11, падение напряжения на котором, образуемое за счет тока коллектора составного транзистора 3, направлено аналогично составляющей падения напряжения на датчике тока I, образованной Iб регулирующего транзистора 2, но так как оно приложено в нижней части второго делителя 8, то компенсирует его. Составной транзистор 3 имеет высокий коэффициент усиления, поэтому можно с большой степенью точности считать, что Iб транзистора 2 равен Iк транзистора 3. При условии, что R1, R11 << R9, R10, можно считать, что R1, R11 являются источниками напряжения UR1, UR11. Тогда эквивалентная схема измерительной цепи защиты имеет вид, представленный на фиг. 2.

Анализ схемы показывает, что напряжение на входах дифференциального усилителя 12 (Uдф) можно выразить следующей формулой: Uдф = Uвх.K1 - UR11 - (Uвх - UR1 - UR11).K2 (2), где К1 = R7/(R6 + R7), K2 = R10/(R9 + R10) - коэффициенты передачи делителей напряжения.

UR11 определяется по следующей формуле: UR11 = R11. Iб = R11. Iн/h21э (3) Подставив (3) и (1) в (2), получим Uдф = Uвх(K1 - K2) + R1 . Iн K2 + R1.Iнx x K2/h21э - R11.Iн (I - K2)/h21э (4) Из формулы (4) видно, что полная компенсация влияния изменения коэффициента усиления регулирующего транзистора 2 достигается при R1 . K2 = R11(I - K2) (5), а выражение для определения R11 имеет следующий вид:
R11 = R1 K2/(1 - K2) (6).

Срабатывание защиты будет происходить при Uдф = 0, т. е. при
Uвх(K1 - K2) = - R1.Iн К2 (7)
При R1 .Iн = Uпор,
Uпор = Uвх(I - K1/K2) (8)
Таким образом, используя выражения (6), (8) можно рассчитать измерительные цепи стабилизатора постоянного напряжения, в котором порог срабатывания защиты по току не зависит от изменения коэффициента усиления регулирующего транзистора, что позволяет повысить функциональную надежность стабилизатора напряжения. (56) С. В. Левинзон Защита в источниках электропитания РЭА М. , "Радио и связь", 1990, с. 78.

Авторское свидетельство СССР N 1357936, кл. G 05 F 1/573, 1985.

Авторское свидетельство СССР N 1026130, кл. G 05 F 1/573, 1982.


Формула изобретения

СТАБИЛИЗАТОР ПОСТОЯННОГО НАПРЯЖЕНИЯ С ЗАЩИТОЙ, содержащий последовательно включенные в силовую шину между входным и выходным выводами датчик тока и регулирующий транзистор, составной транзистор, эмиттером подключенный к базе регулирующего транзистора, и защитный транзистор, эмиттером подключенный к точке соединения эмиттера регулирующего транзистора и датчика тока, а коллектором - к базе составного транзистора, отличающийся тем, что, с целью повышения функциональной надежности путем повышения точности и стабильности порога срабатывания защиты по току, в него введены два резистивных делителя напряжения, компенсирующий резистор и дифференциальный усилитель, причем первый резистивный делитель напряжения включен между входным выводом и общей шиной, второй резистивный делитель напряжения - между точкой соединения эмиттеров регулирущего и защитного транзисторов с датчиком тока и коллектором составного транзистора, компенсирующий резистор включен между коллектором составного транзистора и общей шиной, входы дифференциального усилителя соединены с выходами резистивных делителей напряжения, а выход - с базой защитного транзистора, при этом номиналы компенсирующего резистора Rk и резистора Rд.т датчика тока связаны соотношением Rk = Rд.т K2 (1 - K2), а порог напряжения срабатывания защиты по току Uпор = Rд.т IH выбран из условия Uпор = Uвх (1 - K1 / K2), где K1, K2 - коэффициенты передачи соответственно первого и второго резистивных делителей напряжения; IH - ток нагрузки; Uвх - входное напряжение.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано для защиты источников питания постоянного тока от перегрузок и коротких замыканий

Изобретение относится к электротехнике и может быть использовано в стабилизированных источниках электропитания

Изобретение относится к электротехнике , а именно к источникам питания, и может быть использовано в системе питания устройств автоматики и вычислительной техники, эксплуатирующейся без участия оператора

Изобретение относится к электротехнике и может быть использовано в источниках вторичного электропитания

Изобретение относится к преобразовательной технике и может быть использовано в источниках питания для трехфазных нагрузок с индуктивностью

Инвертор // 2210848
Изобретение относится к преобразовательной технике и может быть использовано в источниках питания для индукционного нагревателя

Изобретение относится к электротехнике и может быть использовано в импульсных ключевых преобразователях для защиты силовых полупроводниковых приборов от сверхтоков

Изобретение относится к стабилизированным источникам питания и может быть использовано для питания радиоэлектронной аппаратуры

Изобретение относится к электротехнике и может быть использовано для защиты источников питания, электроустановок, электронной аппаратуры и др

Изобретение относится к области электротехники и может быть использовано для понижения напряжения электрического источника питания переменного тока для нагрузки с целью эффективного использования энергии

Изобретение относится к преобразовательной технике и может быть использовано в источниках вторичного электропитания

Изобретение относится к схеме и способу контроля нагрузочного тока и устройству управления противопожарной сигнализацией, причем схема содержит источник энергии, резистор восприятия нагрузочного тока для контроля нагрузочного тока и главный переключатель для управления соединением и разъединением источника энергии и дополнительно содержит схему смещения на полевом транзисторе с МОП-структурой для управления действиями главного переключателя, схему усилителя для преобразования значения нагрузочного тока, проходящего через резистор восприятия нагрузочного тока, в значение напряжения, операционную схему для отключения тракта энергопитания и посылки сигнала, указывающего состояние тока перегрузки, когда значение напряжения превышает порог, и схему фиксации для удержания сигнала тока перегрузки. Как только нагрузочный ток превышает преопределенный порог, иными словами, когда возникает событие тока перегрузки, тракт энергопитания источника питания отключается, и состояние тока перегрузки будет блокироваться в течение 50 мкс, чтобы избежать компрометации нормального энергоснабжения внутренних схем контроллера. Технический результат - возможность использовать для контроля нагрузки пользовательских устройств. 3 н. и 11 з.п. ф-лы, 9 ил.

Изобретение относится к силовой электронике, в частности к устройствам, формирующим информационный сигнал о величине тока нагрузки, и может использоваться в схемах ШИМ-управления силовым ключом в импульсных преобразователях входного напряжения в постоянное. Достигаемый технический результат - формирование управляющего сигнала в режиме защиты по току для ограничения выходной мощности при одном и том же его значении, не зависящем от величины входного напряжения. Корректор управляющего сигнала обратной связи по току содержит трансформаторный датчик тока, включенный в цепь силового ключа с устройством управления силовым ключом, включающий первичную обмотку, предназначенную для поступления импульсов измеряемого тока, при этом его вторичная обмотка подключена к нагрузке через выпрямитель, зашунтированный резистором, с образованием обратной связи по току. 12 ил.
Наверх