Низкотемпературный термоэлемент и способ его изготовления

 

Область использования: прямое преобразование тепловой энергии в электрическую. Сущность изобретения: в низкотемпературном термоэлементе, ветви которого выполнены из тройных сплавов на основе теллурида висмута, коммутационные слои выполнены из железа или его сплавов и присоединены к торцевым поверхностям ветвей, а средняя часть коммутационного слоя расположена на торцевой поверхности электроизоляционной прослойки. Коммутационные шины присоединены к коммутационным слоям, при этом соотношение толщины коммутационного слоя и высоты коммутационной шины выбирают в пределах 1 : 3 - 10. При изготовлении термоэлемента после прессования ветвей из порошков полупроводниковых материалов при комнатной температуре на их торцевые поверхности посредством газоплазменного напыления наносят коммутационный слой и затем коммутационную шину, после чего проводят упрочнение посредством отжига или "горячего" прессования. Приводятся оптимальные режимы газоплазменного напыления и упрочнения. 2 с. п. ф-лы, 7 з. п. ф-лы, 3 ил.

Изобретение относится к области прямого преобразования и может быть использовано в низкотемпературных термоэлементах (т. е. в термоэлементах, температура горячих спаев которых при эксплуатации не превышает 300оС), ветви которых изготовлены из тройных сплавов на основе теллурида висмута.

Известен низкотемпературный термоэлемент, содержащий полупроводниковые ветви n- и р-типа, изготовленные из тройных сплавов, коммутационные слои на основе антимонида висмута и коммутационные шины из меди [1] .

Недостатком известного термоэлемента является высокая стоимость, которая обусловлена использованием в качестве материала коммутационного слоя трехкомпонентного соединения, а также дороговизной технологического процесса коммутации, включающего газотермическое распыление в глубоком вакууме антимонида висмута.

Наиболее близким по технической сущности и достигаемому результату к описываемому низкотемпературному термоэлементу является термоэлемент, содержащий полупроводниковые ветви n- и p-типов проводимости, выполненные из тройных сплавов на основе теллурида висмута, присоединенные к ним коммутационные слои и коммутационные шины и электроизоляционную прослойку, размещенную между ветвями [2] .

В известном термоэлементе высокая стоимость определяется, с одной стороны, значительной стоимостью материала коммутационного слоя, который в известном элементе выполняется в виде спрессованных пластин из антимонида никеля (толщиной 0,5-0,8 мм) с добавкой пластификатора, поскольку стоимость такого материала коммутационного слоя сравнима со стоимостью полупроводникового материала ветвей; с другой стороны, повышенная стоимость термоэлемента объясняется высокой стоимостью технологического процесса коммутации с ветвями коммутационных слоев и коммутационных шин и последующей "раскоммутации".

Наиболее близким к предложенному способу является способ коммутации прессованных термоэлементов из сплава Bi2Te3 посредством газоплазменного напыления слоя коммутационных материалов на поверхности термоэлементов [3] .

Целью изобретения является снижение стоимости низкотемпературного термоэлемента при одновременном повышении технологичности его изготовления.

Указанный в цели положительный эффект обеспечивается за счет того, что удалось существенно снизить стоимость материала коммутационного слоя, поскольку стоимость железа и его сплавов, из которого в заявленном термоэлементе выполняются коммутационные слои, более чем на порядок меньше стоимости материала коммутационного слоя в известном термоэлементе, и толщина его (0,1-0,25 мм) в несколько раз меньше толщины коммутационного слоя (0,5-0,8 мм) в известном термоэлементе, размещение средней части коммутационного слоя на торцевой поверхности электроизоляционной прослойки способствует снижению стоимости, поскольку электроизоляционная прослойка служит опорным элементом и это позволяет выбрать толщину коммутационного слоя минимально необходимой для создания надежного барьера (экспериментально установлено, что ресурс в несколько лет обеспечивают коммутационные слои толщиной 0,1-0,25 мм), а снижение толщины этого слоя способствует снижению его стоимости.

Для получения минимальных потерь в коммутационных шинах предпочтительно их изготавливать из материалов, обладающих хорошей адгезией к железу и высокой электропроводностью, например из алюминия, никеля и т. п. Предпочтительно с учетом электрического сопротивления материала высоту коммутационных шин выбирать в пределах 0,75-1 мм, что определяет оптимальный диапазон отношения толщины коммутационного слоя к высоте коммутационной шины в пределах 1: 3-10, так как при меньшем отношении могут резко увеличиться суммарные электрические потери в коммутации, а превышение этих отношений более чем на порядок практически не приводит к снижению потерь и вызывает увеличение стоимости за счет длительности процесса газоплазменного напыления материала коммутационных шин.

Предпочтительно коммутационные слои выполнять из железа или его сплавов, например из низкоуглеродистых сталей (марка СТ 08, СТ 10, СТ 15, 09КП и т. п. ), поскольку для них экспериментально установлена высокая ресурсная стабильность (ресурс - несколько лет при эксплуатации в инертной атмосфере при температуре горячих спаев 250оС), почти идеальное совпадение коэффициентов термического расширения этих материалов с КТР полупроводниковых тройных сплавов, из которых изготавливаются ветви, и, кроме того, именно низколегированные стали обладают высокой пластичностью, что повышает ресурсную стабильность при термоциклировании.

Коммутационные шины предпочтительно изготавливать из алюминия или его сплавов, поскольку наряду с высокой электропроводностью и дешевизной именно эти материалы имеют великолепную адгезию к железу и его сплавам при газоплазменном напылении его.

Использование прослойки высотой меньше ветви и выполнение торцевой поверхности дугообразной позволяет до минимума снизить толщину коммутационных соединений и, соответственно, стоимость, поскольку автоматически формируется зиг и это позволяет получать высокую механическую прочность при минимальной толщине.

Снижению стоимости способствует и использование способа изготовления термоэлемента, который состоит из одновременного формирования коммутационного слоя и присоединения его к торцевым поверхностям ветвей, непосредственно за формированием этого слоя через 5-20 с присоединяют коммутационные шины, газоплазменное напыление позволяет быстро (менее минуты) формировать коммутационный слой, обладающий отличной адгезией с материалом холоднопрессованных полупроводниковых ветвей; промежуток времени между нанесением коммутации слоя и последующим нанесением материала коммутационной шины выбирать менее 5 с нецелесообразно, так как за меньшее время практически невозможно перейти к газоплазменному напылению другого материала (проверено экспериментально), а при интервале более 20 с получается излишнее окисление нанесенного слоя, и в то же время в течение 5-20 с вполне удается переключиться на напыление материала коммутационной шины (например, останавливая подачу одной заготовки и начиная подачу другой заготовки).

Присоединение материала коммутационной шины к материалу коммутационного слоя также позволяет существенно упростить технологический процесс коммутации и соответственно снизить стоимость термоэлемента.

Заключительная операция способа - упрочнение многослойной системы полупроводник - коммутационные слои - коммутационные шины с использованием термообработки. Предпочтительно при газоплазменном напылении коммутационных слоев подавать в зону плазмообразования заготовку из железа или его сплавов (в сравнении с обычно используемой заготовкой в виде порошка использование провода снижает стоимость и, главное, устраняется влияние окисления поверхности частиц порошка). Экспериментально установлено, что оптимальный диапазон диаметра подаваемого провода составляет 0,5-1 мм, так как при меньшем диаметре образуются мелкодисперсные частицы, которые плохо распыляются из-за частичного сгорания, а при диаметре, превышающем 1 мм, наблюдается забивание сопла. Скорость подачи провода выбирают в пределах 1-1,6 мм/с, так как при меньшей скорости подачи не обеспечивается непрерывность процесса напыления, и процесс, соответственно, затягивается, а при скорости, превышающей 1,6 мм/с, наблюдается непроплавление отдельных участков провода и приходится излишне увеличивать затрачиваемую мощность, что приводит к увеличению стоимости изготовления.

Экспериментально установлены режимы газоплазменного напыления железа на холоднопрессованные полупроводниковые ветви или его сплавов (на примере низколегированных сталей), так мощность, потребляемая плазматроном, выбирается в пределах 7,6-12,0 кВт при токе 320-400 А, поскольку при меньших значениях мощности (и значениях тока) не удается добиться достаточно равномерного слоя - затруднено получение устойчивой наносимой среды, а при мощности более 12 кВт (и токе более 400 А) не наблюдается дальнейшее улучшение качества напыляемого слоя и увеличивается расход электроэнергии, а, соответственно, и стоимость.

Расход инертного газа (обычно это аргон) выбирают в пределах 25-40 л/мин, так как при меньшем расходе наблюдается неустойчивость образующейся струи и процесс напыления идет нестабильно.

Экспериментально установлены оптимальные параметры режима газоплазменного нанесения алюминия или его сплавов: скорость подачи провода 1,5-2 мм/с, диаметр провода 0,8-1 мм, мощность 5-8 кВт, расход газа 18-25 л/мин.

Экспериментально оптимизированы процессы дополнительного упрочнения получаемых после газоплазменного напыления структур полупроводник - коммутационные слои - коммутационные шины, что позволяет наряду с повышением эффективности улучшить термомеханическую прочность. Так, при упрочнении при помощи отжига температуру отжига выбирают в пределах 400-450оС. В результате именно при таких температурах обеспечивается хорошее дополнительное сцепление частиц во всех слоях термоэлементов и слоев между собой. При меньших температурах и времени отжига менее 2 ч упрочнение недостаточно, при температуре свыше 450оС и времени менее 1 ч резко возрастает сублимация полупроводникового материала. При использовании "горячего" прессования давление выбирают в диапазоне 3,5-4,5 т/см2, так как при меньших давлениях не обеспечивается надежное сцепление, а при давлениях, превышающих 4,5 т/см2, наблюдается перепрессовка - излишняя ползучесть ветвей, аналогично влияние температур, соответствующих этим давлениям, а продолжительность процесса "горячего" прессования выбирают в диапазоне 3-7 мин, при меньшей продолжительности процесса не наблюдается завершенное формирование структур, при большем времени - перепрессовка.

На фиг. 1 изображен низкотемпературный термоэлемент; на фиг. 2 - то же с прямоугольным зигом в коммутационной шине; на фиг. 3 - то же с дугообразным зигом.

Низкотемпературный элемент содержит полупроводниковые ветви n- и p-типа 1 и 2, коммутационные слои 3-5, присоединенные к ним коммутационные шины 6-8, электроизоляционную прослойку 9 с торцевой поверхностью 10, конец 11 электроизоляционной прослойки.

Полупроводниковые ветви n- и p-типов предпочтительно выполнять из тройных сплавов на основе теллурида висмута (n-тип Bi2Te3 - Sn2Te3, p-тип Bi2Te3 - Sb2Te3 с легирующими примесями) как обладающие максимальной эффективностью в диапазоне 20-300оС. Коммутационные слои 3-5 выполняются из железа (с чистотой 99,9-99,7% ) или его сплавов (предпочтительно из низкоуглеродистых сталей, например из сталей марок СГ 08, СТ 10, СТ 15, 09КП и т. д. , как обладающих максимальной пластичностью). Коммутационный слой 3 присоединен посредством газоплазменного напыления к торцевым поверхностям ветвей 1 и 2, которые ориентированы перпендикулярно направлению прессования, причем средняя часть коммутационного слоя 3 расположена на торцевой поверхности электроизоляционной прослойки 9. Коммутационная шина 6 присоединена посредством газоплазменного напыления к коммутационному слою 3, а коммутационные шины 7 и 8 соответственно к коммутационным слоям 4 и 5. Электроизоляционная прослойка 9 может быть заглублена по отношению к торцевым поверхностям ветвей 1 и 2 на глубину, не превышающую толщины коммутационного слоя 3 (см. фиг. 3), причем в этом случае предпочтительно конец коммутационной прослойки совмещать с угловыми кромками ветвей 1 и 2. Коммутационные шины 6-8 предпочтительно изготавливать из алюминия или его сплавов.

П р и м е р. При комнатной температуре из порошков полупроводниковых материалов, выполненных из тройных сплавов на основе теллурида висмута, при давлении Р1 = 5 т/см2 прессуют ветви с поперечным сечением 3х3 мм и высотой 5 мм. Ветви приклеивают каплями эпоксидной смолы к прослойке из полиимида толщиной 0,3 мм, располагая торцевую поверхность пленки заподлицо с поверхностью ветвей. Затем на плазменной установке УПУ-3Д проводят газоплазменное напыление с использованием заготовки из провода марки СТ 10, подаваемой в зону плазмообразования со скоростью 1,2 мм/с, при затрачиваемой мощности 9 кВт, токе 350 А и расходе аргона 30 л/мин. Проводят напыление коммутационного слоя СТ 10 толщиной 0,15 мм на поверхность, перпендикулярную плоскости "холодного" прессования, - три прохода сопла над поверхностью ветвей. Напыление проводят через окно, повторяющее форму коммутационной шины. Затем напыляют слой алюминиевого сплава АМЦ толщиной 1 мм при следующих режимах: скорость подачи провода 1,5 мм/с, диаметр провода 1 мм, мощность 5,5 кВт, расход аргона 20 л/мин. Далее указанные операции напыления коммутационных слоев из СТ10 и слоев коммутационных шин из АМЦ проводят на противоположных поверхностях полупроводниковых ветвей. В заключение сформированная заготовка отжигается при 440оС в течение 100 мин в атмосфере аргона. Измерение характеристик изготовленного термоэлемента показало, что термоЭДС его в перепаде 200оС совпадает с термоЭДС базового объекта, а сопротивление коммутационных соединений меньше на 1% .

Изготовленный низкотемпературный термоэлемент (см. фиг. 1) работает следующим образом. На горячие спаи полупроводниковых ветвей 1 и 2 через коммутационную шину 6 и коммутационный слой 3 поступает тепловой поток, создающий на ветвях 1 и 2 перепад температур. За счет эффекта Зеебека генерируется термоЭДС, и с концевых коммутационных шин 7 и 8 в полезную нагрузку поступает вырабатываемая электрическая энергия. При нагреве до 250оС происходит термическое расширение коммутационной шины 6 и коммутационного слоя 3, средняя часть которого опирается на торцевую поверхность электроизоляционной прослойки 9. При длительной эксплуатации (2000 ч и более) не наблюдалось ухудшение характеристик термоэлемента. (56) 1. Авторское свидетельство СССР N 323823, кл. H 01 L 35/34, 1970.

2. Авторское свидетельство СССР N 704397, кл. H 01 L 35/04, 1978.

3. Авторское свидетельство СССР N 199946, кл. H 01 L 35/34, 1965.

Формула изобретения

1. Низкотемпературный термоэлемент, содержащий полупроводниковые ветви n- и p-типов проводимости, выполненные из тройных сплавов на основе теллурида висмута, коммутационные шины, присоединенные к ветвям посредством коммутационных слоев, и электроизоляционную прослойку, размещенную между ветвями, отличающийся тем, что, с целью снижения стоимости при одновременном повышении технологичности изготовления, коммутационные слои выполнены из железа или его сплавов, причем средняя часть коммутационного слоя расположена на торцевой поверхности электроизоляционной прослойки, а соотношение толщины коммутационного слоя и высоты коммутационной шины составляет 1 : 3 - 10.

2. Термоэлемент по п. 1, отличающийся тем, что коммутационные слои выполнены из низколегированной стали.

3. Элемент по п. 1, отличающийся тем, что коммутационные шины выполнены из алюминия или его сплавов.

4. Элемент по п. 1, отличающийся тем, что ветви выполнены в форме прямоугольных параллелепипедов, электроизоляционная прослойка присоединена к боковым поверхностям ветвей, причем высота электроизоляционной прослойки меньше высоты ветвей.

5. Термоэлемент по п. 1, отличающийся тем, что торцевая поверхность электроизоляционной прослойки имеет дугообразную форму, причем коммутационный слой примыкает к электроизоляционной прослойке.

6. Способ изготовления низкотемпературного термоэлемента посредством прессования ветвей из порошков тройных сплавов на основе теллурида висмута при комнатной температуре, газоплазменного напыления коммутационного слоя и последующего газоплазменного напыления коммутационной шины, отличающийся тем, что газоплазменное напыление коммутационного слоя проводят одновременно на торцевые поверхности холоднопрессованных ветвей и электроизоляционной прослойки, расположенной между ветвями, через 5 - 20 с осуществляют газоплазменное напыление коммутационной шины и затем проводят дополнительное упрочнение с применением термообработки.

7. Способ по п. 6, отличающийся тем, что при газоплазменном напылении коммутационного слоя в зону плазмообразования перемещают конец заготовки в виде провода диаметром 0,5 - 1 мм из железа или его сплавов со скоростью 1 - 1,6 мм/с, при этом выбирают следующий режим плазмообразования: затрачиваемая мощность 7,6 - 12 кВт при токе 320 - 400 А и расходе инертного газа 25 - 40 л/мин.

8. Способ по п. 6, отличающийся тем, что дополнительное упрочнение проводят посредством горячего прессования в направлении, перпендикулярном направлению прессования при изготовлении ветвей, при следующих режимах: давление 3,5 - 4,5 т/см2, температура 350 - 370oС, время 3 - 7 мин.

9. Способ по п. 1, отличающийся тем, что дополнительное упрочнение проводят путем отжига ветвей с напыленными слоями в инертной атмосфере при 420 - 450oС в течение 1,5 - 2 ч.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области преобразования тепловой энергии распада радионуклидов в электрическую энергию, а более конкретно к радионуклидной энергетике

Изобретение относится к электронной технике и может быть использовано в качестве функционального элемента для решения задачи комплексной микроминиатюризации устройства низкочастотной электроники

Изобретение относится к усовершенствованию автономных термоэлектрических генераторов, используемых в отдаленных и труднодоступных районах

Изобретение относится к преобразованию тепловой энергии в механическую и может быть использовано в качестве термоэлектрического теплового двигателя

Изобретение относится к термоэлектрическим охладителям, предназначенным для охлаждения приемников ИК-излучения и элементов микроэлектроники

Изобретение относится к физике твердого тела

Изобретение относится к холодильной технике, а более конкретно к термоэлектрическим холодильникам, предназначенным для охлаждения приемников и источников инфракрасного излучения, элементов радиоэлектроники и т.д

Изобретение относится к конструкциям радиоизотопных термоэлектрических генераторов для питания малогабаритной электронной аппаратуры, например имплантируемых в организм человека приборов.Целью изобретения является повышение КПД При одновре1 енном улучшении эксплуатационных характеристик генератора, содержащего радионуклилный источник тепла 3, выполненный в виде герметичной трубки капиллярного типа, причем внутренняя полость заполнена препаратом на основе альфаактивных нуклидов, а крепление источника тепла к термоэлектрической ватарее 4 осуществляется теплопроводным компаундом 6 к его цилиндрической поверхности, при этом термоэлектрическая батарея 4 по форме и площади сечения перпендикулярного тепловому потоку, идентична радионуклидному источнику тепла

Изобретение относится к области термопар и, в частности, к коаксиальным термоэлементам и термопарам, изготовленным из коаксиальных термоэлементов

Изобретение относится к полупроводниковым приборам, в частности к термоэлектрическим батареям, работающим на основе эффекта Пельтье

Изобретение относится к термоэлектрическим устройствам, основанным на эффектах Пельтье и Зеебека

Изобретение относится к области преобразования тепловой энергии в электрическую и может быть использовано в термоэлектрических генераторах (ТЭГ), применяемых с целью утилизации отработавшего тепла ядерных реакторов, двигателей внутреннего сгорания (ДВС), дизельных и других тепловых двигателей

Изобретение относится к электрическим ячейкам

Изобретение относится к конструкциям твердотельных систем охлаждения, нагревания и выработки электроэнергии

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения универсальной термоэлектрической машины, предназначенной для использования в энергетике, промышленности и народном хозяйстве в качестве статического или динамического термоэлектрического генератора постоянного тока, который преобразует тепло работающих ядерных реакторов, энергетических блоков, двигателей внутреннего сгорания, источников солнечной энергии, источников термальных вод, печей, газовых горелок и других технических сооружений в электрическую энергию, а также в качестве электрических машин постоянного тока, работающих от источника термоэлектричества, получаемого от перепада температур, устройств вращения магнитных систем, вращающихся фурм для установок сжигания твердых бытовых и других органических отходов с углем, силовых приводов транспортных средств, подъемных механизмов, транспортеров, систем автоматического регулирования и управления механическими устройствами, измерительных и эталонных устройств
Наверх