Способ изготовления металлопористого катода

 

Использование: в электронной технике, в частности при изготовлении металлопористых катодов для электронных приборов СВЧ. Сущность изобретения: смесь исходного вольфрамового порошка с окисью скандия окисляют на воздухе при 400 - 700С и восстанавливают в атмосфере водорода при 1000 - 1300С, после чего пропитывают матрицу алюминатом бария - кальция. 2 ил.

Изобретение относится к электронной технике, в частности к изготовлению металлопористых катодов для электронных приборов СВЧ.

Известен способ изготовления прессованных металлопористых катодов (1), включающий операции прессования вольфрамовой матрицы из смеси порошков вольфрама и совместно осажденного скандата-алюмината бария-кальция с содержанием окиси скандия 2-5 мас, % с последующим спеканием при 1400оС. Катоды при 1050оС имеют пониженную скорость испарения (4 10-10 г/см2 с) и стабильную (в течение 7-4 тыс. ч) плотность тока.

Недостатками указанной технологии являются усадка прессованных катодов и необходимость получения совместно осажденного скандата-алюмината бария-кальция. В случае использования смеси порошков окиси скандия и алюмината свойства катодов невоспроизводимы.

Известен также способ изготовления металлопористых диспенсерных катодов, принятый за прототип. Способ включает операции прессования пористой вольфрамовой матрицы, ее спекание, нанесение на ее поверхность окиси скандия, повторный отжиг матрицы для внедрения в нее окиси скандия и пропитку матрицы эмиссионным веществом - алюминатом бария-кальция. Такие катоды не имеют усадки, обладают большим сроком службы в условиях ионной бомбардировки и имеют эмиссионные свойства не хуже, чем обычные осмированные металлопористые катоды. Недостатком указанной технологии является трудность спекания окиси скандия в вольфрамовой матрице из-за высокой температуры плавления окиси скандия (2500оС), неконтролируемое количество внесенной окиси скандия в матрицу и, как следствие, значительный разброс катодов по эмиссионным свойствам. Это приводит к необходимости повышения рабочей температуры катодов и сокращению их срока службы.

Целью изобретения является повышение срока службы катодов. Это достигается тем, что смесь исходного вольфрамового порошка с окисью скандия окисляют на воздухе при 400-700оС и восстанавливают в атмосфере водорода при 1000-1300оС. Затем из полученного порошка одним из известных методов формируется пористая вольфрамовая матрица, которая пропитывается алюминатом бария-кальция.

При смешивании порошков вольфрама и окиси скандия можно точно дозировать содержание окиси скандия и обеспечить ее равномерное распределение по массе порошка.

Окисление смеси порошков проводится в интервале температур 400-700оС. В процессе окисления вольфрамового порошка, образующиеся окиси вольфрама взаимодействуют с окисью скандия 2W + 3О2 ->> 2WO3 3WO3 + Sc2O3 ->> Sc2W3O12 При температуре ниже 400оС окисление вольфрамового порошка резко замедляется и процесс вести нецелесообразно. Окисление вольфрамового порошка при температуре выше 700оС недопустимо из-за значительной летучести окислов вольфрама, которая ведет к потере вещества и измененному составу смеси порошков, а также происходит спекание порошка в конгломераты.

Восстановление окисленного вольфрамового порошка в водороде осуществляется в интервале температур 1000-1300оС. При этом образуются частицы вольфрамового порошка с размером частиц 4-12 мкм и, как показали наши исследования, соединение вольфрама с окисью скандия сохраняется. Если температура восстановления ниже 1000оС, образуется мелкодисперсный вольфрамовый порошок с размером частиц менее 3 мкм, а если выше 1300оС вольфрамовый порошок спекается в конгломераты. Мелкий и конгломерированный порошки не пригодны для формирования вольфрамовой матрицы с плотностью 75 + 5% от плотности компактного вольфрама и с газопроницаемостью 1 10-3 - 1 10-4 см2/с ат. Такие параметры матрицы, наряду с дозированным содержанием окиси скандия в ней, необходимы для получения воспроизводимых устойчивых эмиссионных свойств катодов.

П р и м е р. Предложенный способ был использован для изготовления торцевого металлопористого пропитанного катода диаметром 30 мм. Исходный вольфрамовый порошок с размером частиц 1-3 мкм смешивали с порошком окиси скандия, мас. % : Вольфрам 96 Окись скандия 4 Смесь порошков окисляли на воздухе при 450-550о в течение 4 ч. Затем порошок восстанавливали в водородной печи при 120025оС в течение 1 ч. Полученный порошок имел размер в основной своей массе 4-12 мкм. Формирование вольфрамовой матрицы осуществляли нанесением порошка плазменным методом на молибденовый керн с последующей пропиткой матрицы алюминатом бария-кальция состава 3ВаО 0,5СаО Al2O3 в водородной печи при 1750 + 50оС в течение 5 мин.

Полученные катоды монтировали в катодные узлы косвенного накала, для которых и определяли эмиссионные характеристики. На фиг. 1 и 2 приведен сравнительный анализ эмиссионных характеристик двух партий катодов по 8 шт. , изготовленных по способу-прототипу и по предлагаемому нами способу.

Разброс по температуре при плотности тока насыщения 0,1 А/см2 для катодов, изготовленных по способу-прототипу, составляет 1350оС, а для катода, изготовленного по предлагаемому способу, 30оС; Разброс по работе выхода для этих двух типов катодов равен соответственно 1,9-2,13 эВ и 1,9-1,97 эВ. При практическом использовании катодов, изготовленных по предлагаемой технологии, возможны выбор более низкой рабочей температуры и получение больших долговечностей электровакуумных приборов. (56) Патент США N 4625142, кл. Н 01 J 9/04, 1988.

Формула изобретения

СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛОПОРИСТОГО КАТОДА, включающий операции формирования пористой матрицы из вольфрамового порошка, введения в нее окиси скандия и пропитку матрицы эмиссионным материалом - алюминатом бария-кальция, отличающийся тем, что, с целью увеличения срока службы катода, смесь исходного вольфрамового порошка с окисью скандия окисляют на воздухе при 400 - 700oС и восстанавливают в атмосфере водорода при 1000 - 1300oС.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к вакуумной электронике, в частности к производству электровакуумных приборов

Изобретение относится к электронной технике, в частности к методам изготовления металлопористых катодов (МПК) для электронных приборов СВЧ

Изобретение относится к электронной технике, а именно к способам изготовления вольфрамового торированного карбидированного катода для электровакуумных приборов

Изобретение относится к электронной технике и может быть использовано в электронно лучевых приборах, например кинескопах

Изобретение относится к электротехнике, в частности к способам изготовления металлопористых катодов для электровакуумных приборов

Изобретение относится к электронной технике, в частности к способам анализа и контроля качества термокатодов электровакуумных приборов и предназначено для оценки неоднородности плотности тока эмиссии по эмиттирующей поверхности катода эмиссионной неоднородности (ЭН)

Изобретение относится к электронной технике и может быть использовано при изготовлении карбидированных катодов

Изобретение относится к сплавам для электронной техники и приборостроения, в частности для термоэмиттеров поверхностно-ионизационных детекторов аминов, гидразинов и их производных

Изобретение относится к электронной технике и касается термоэмиссионных катодов для электронных устройств с эмиттером из гексаборида лантана

Изобретение относится к электронной технике и может быть использовано при изготовлении эмиссионных материалов для катодов электровакуумных и газоразрядных приборов на основе сложных соединений щелочноземельных металлов (Ba, Sr и Ca)

Изобретение относится к материалам электронной техники, а более конкретно к электродным материалам для полевой эмиссии

Изобретение относится к электронной технике, в частности к термо- и вторично-эмиссионным катодам и способу их изготовления

Изобретение относится к плазменной технике и может быть использовано для изготовления электродов генераторов низкотемпературной плазмы, обеспечивающих эмиссию электронов и устойчивое горение дуги
Наверх