Способ получения высокомолекулярной эпоксидной смолы

 

Использование: для получения термостойких эпоксидных полимеров с высокой гидролитической устойчивостью при повышенных температурах. Сущность: в реактор загружают ацетон, технический диоксидифенилсульфон смесь изомеров 3,3,4,4-диоксидифенилсульфона и при 20 - 30°С последовательно загружают и растворяют фталевый ангидрид и три (п - аминофенил)метан. Затем вводят предварительно разогретую до 50 5qC низкомолекулярную эпоксидиановую смолу мол. м. 340 - 600 (1 стадия), температуру поднимают до 70 - 90 °С перемешивают в течение 30 - 60 мин (2 стадия). После этого температуру поджимают до 100 - 120°С, перемешивают 30 - 120 мин с одновременным отгоном ацетона (3 стадия) до получения высокомолекулярной эпоксидной смолы. мол.м. 1000 - 1400 с содержанием эпоксидных групп 6 - 10%. 5 табл.

Изобретение относится к способам получения высокомолекулярных эпоксидных смол на основе эпоксидных диановых смол и может быть использовано для получения термостойких эпоксидных полимеров с высокой гидролитической устойчивостью при повышенных температурах и для других целей.

Известен способ получения высокомолекулярных эпоксидных смол поликонденсацией при 80оС в течение 13 ч низкомолекулярных диэпоксидов с дифенолами общей формулы в том числе и серосодержащими в растворе метилэтилкетона в присутствии водного раствора щелочного катализатора (1).

Однако эпоксидные полимеры на основе эпоксидной смолы, полученной этим способом, не обладают высокой термостойкостью.

Указанный способ отличается низкой технологичностью: процесс получения смолы проводят в течение 56 ч.

Наиболее близким по технической сущности является способ получения высокомолекулярной эпоксидной смолы конденсацией в растворе низкомолекулярной эпоксидиановой смолы с техническим диоксидифенилсульфоном в присутствии азотсодержащего модификатора при постадийном введении компонентов и ступенчатом нагреве (2).

В качестве азотсодержащего модификатора используют Е-капролактам и ортохлоранилинформбензальдегидный кондесат. Отвержденные изометилтетрагидрофталевым агидридом эпоксидыне смолы являются термостойкими, но имеют низкую гидролитическую стойкость при повышенных температурах.

Кроме того, сильный разогрев реакционной массы вследствие экзотермичости реакции не позволяет проводить конденсацию с использованием больших количеств исходных веществ, что снижает технологичность указанного способа.

Целью изобретения является упрощение технологии процесса и повышение термостойкости и гидролитической стойкости при повышенной температуре отвержденных материалов на основе эпоксидных смол.

Поставленная цель достигается тем, что в способе получения высокомолекулярной эпоксидной смолы, осуществляемом конденсацией в растворе низкомолекулярной эпоксидиановой смолы с техническим диоксидифенилсульфоном в присутствии азотсодержащего модификатора при постадийном введении компонентов и ступенчатом нагреве, в качестве низкомолекулярной эпоксидиановой смолы используют смолу мол. м. 340-600, в качестве азотсодержащего модификатора - три (п-аминофенил)-метан и дополнительно фталевый ангидрид при массовом соотношении низкомолекулярной эпоксидиановой смолы, технического диоксидифенилсульфона, фталевого ангидрида и три (п-аминофенил)метана (50-94) : (4,8-27,5) : (0,5-14,5) : (0,7-8,0) соответственно, причем сначала при 20-30оС последовательно растворяют в ацетоне технический диоксидифенилсульфон фталевый ангидрид и при (п-аминофенил)-метан, вводят предварительно разогретую до 505оС низкомолекулярную эпоксидиановую смолу, поднимают температуру до 70-90оС, перемешивают в течение 30-60 мин и затем поднимают температуру до 100-120оС, перемешивают 30-120 мин с одновременным отгоном ацетона до получения высокомолекулярной эпоксидиановой смолы мол. м. 1000-1400 с содержанием эпоксидных груп 6-10%.

Согласно изобретению используют эпоксидиановые смолы мол. м. 340-600 (ГОСТ 10587-84)-ЭД-20, ЭД-16, Э-40, технический диоксидифенил-сульфон, представляющий собой смесь изомеров 4,4' - и 3,3' -диоксидифенилсульфона при их массовом соотношении (20-98) : (2-80) (ТУ-6-14-14-79).

П р и м е р 1. I стадия.

В реактор, снабженный обогревом, мешалкой, прямым холодильником и ловушкой для низкокипящих жидкостей, загружают 43 мас.ч. ацетона и 16,15 мас. ч. техн. диоксидифенилсульфона при соотношении изомеров 4,4- и 3,3-диоксидифенилсульфона - 59: 41 и перемешивают при 25оС до полного растворения, затем добавляют 7,5 мас. ч. фталевого ангидрида и 4,35 три/п-аминофенил/метана и перемешивают при той же температуре до полного растворения.

II стадия.

В полученный раствор вводят предварительно разогретую до 50оС эпоксидиановую смолу с мм 420 (ЭД-20) в количестве 72 мас.ч., поднимают температуру до 80оС и перемешивают в течение 4 мин.

III стадия.

Поднимают температуру до 110оС и перемешивают 75 мин. При этом в ловушку отгоняют ацетон. После начала экзотермической реакции включают охлаждение.

Полученный продукт - высокомолекулярную смолу - сливают в гостированную тару.

Полученная высокомолекулярная смола при соотношении компонентов 72:16, 15: 7,5:4,35 имеет следующие характеристики: внешний вид при 20оС - твердое вещество темно-вишневого цвета растворимость в ацетоне - полностью растворяется.

Температура размягчения - 100-110оС Эпоксидное число 8 Молекулярная масса 1200 Примеры 2-7 осуществляют аналогично примеру 1. Характеристики исходных компонентов и их соотношение приведены в табл.1.

Свойства высокомолекулярных эпоксидных смол по примерам приведены в табл.2.

Полученные смолы отверждают изометилтетрагидрофталевым ангидридом при 80оС - 2 ч и 150оС - 4 ч.

Свойства отвержденных материалов на основе смол по примерам 1-7 приведены в табл.3.

П р и м е р ы 8-19. Осуществляют аналогично примеру 1, но в условиях, приведенных в табл.4.

Свойства отвержденных ИМТГФА материалов на основе высокомолекулярных смол по примерам 8-19 приведены в табл.5.

Таким образом, способ получения высокомолекулярной смолы по изобретению позволяет упростить технологию процесса за счет увеличения предельно допустимой реакционной массы компонентов, повысить термостойкость и гидролитическую стойкость при повышенной температуре отвержденных высокомолекулярных эпоксидных смол.

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОМОЛЕКУЛЯРНОЙ ЭПОКСИДНОЙ СМОЛЫ конденсацией в растворе низкомолекулярной эпоксидиановой смолы с техническим диоксидифенилсульфоном в присутствии азотсодержащего модификатора при постадийном введении компонентов и ступенчатом нагреве, отличающийся тем, что в качестве низкомолекулярной эпоксидиановой смолы используют смолу молекулярной массы 340 - 600, в качестве азотсодержащего модификатора - три (n-аминофенил)-метан и дополнительно вводят фталевый ангидрид при массовом соотношении низкомолекулярной эпоксидиановой смолы, технического диоксидифенилсульфона, фталевого ангидрида и три (n-аминофенил)-метана (50 - 94) : (4,8 - 27,5) : (0,5 - 14,5) : (0,7 - 8,0) соответственно, причем сначала при 20 - 30oС последовательно растворяют в ацетоне технический диоксидифенилсульфон, фталевый ангидрид и три (n-аминофенил)-метан, вводят предварительно разогретую до 50 5oС низкомолекулярную эпоксидиановую смолу, поднимают температуру до 70 - 90oС, перемешивают в течение 30 - 60 мин и затем поднимают температуру до 100 - 120oС, перемешивают 30 - 120 мин с одновременным отгоном ацетона, до получения высокомолекулярной эпоксидной смолы.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к органической химии, конкретно к дитиирановому производному бензимидазолона-2 формулы I который может найти применение в качестве мономера и модификатора эпоксиаминных композиций

Изобретение относится к композициям на основе эпоксидных олигомеров, модифицированных сульфатным лигнином, используемым в качестве защитного покрытия в лакокрасочной промышленности, и позволяет повысить стойкость покрытий на основе композиций в агрессивных средах (стойкость к действию 20% NAOH 15-25 сут 3% NACL сут 10% H<SB POS="POST">2</SB>SO<SB POS="POST">4</SB> 50-60 сут)

Изобретение относится к способу получения азотсодержащих пероксидных олигомеров на основе эпоксидных соединений, которые могут быть использованы для получения лаковых покрытий

Изобретение относится к химической промышленности и может найти применение при получении фурано-эпоксидного связующего, предназначенного для производства клеев, покрытий, сложных пластиков, герметиков, мастик

Изобретение относится к области нефтедобывающей промышленности и может быть использовано для защиты нефтепромыслового оборудования от коррозии при изоляции и креплении скважин

Изобретение относится к модифицированным фосфором эпоксидным смолам с эпоксидным числом от 0,02 до 1 моль/100 г общей структурной формулы I где R2 обозначает остаток полиэпоксидного соединения, уменьшенный на глицидильные группы; n - целое число от 1 до 5; m - целое число от 1 до 5, причем сумма (n+m) является целым числом от 2 до 6; В обозначает остатки ангидридов фосфиновых и/или фосфоновых кислот формул II, III, IV, V, VI, VII, VIII где R, R1 и R3 независимо друг от друга обозначают углеводородный остаток с 1-20 С-атомами, предпочтительно 1-6 С-атомами; А - двухвалентный углеводородный остаток с 1-10 С-атомами; У - целое числе, по меньшей мере I, предпочтительно 1-100; Z - целое число, по меньшей мере 3, предпочтительно 3-100

Изобретение относится к вододиспергируемым полимерам и способу его получения, которые являются основной композицией для покрытий, обладающих повышенной коррозионной стойкостью

Изобретение относится к химии полимеров, в частности к области синтеза промоторов адгезии на основе полиэтиленполиамина для поливинилхлоридных (ПВХ) пластизолей и к составу адгезионных ПВХ-пластизолей, применяемых в качестве клеев для масляных, топливных, воздушных фильтров автомобилей, для герметизации и защитных покрытий металлических поверхностей

Изобретение относится к водорастворимым эпоксисмолам, способу их получения, твердому веществу или порошку на их основе, которые находят применение в качестве герметиков, адгезивов, композиций для покрытий

Изобретение относится к эпоксидным олигомерам, связующим композициям, используемым в производстве электроизоляционных, склеивающих и радиационностойких материалов

Изобретение относится к способу получения электроизоляционного компаунда, который может быть использован для пропитки и заливки высоковольтных и низковольтных элементов электро- и радиоаппаратуры, трансформаторов, дросселей

Изобретение относится к области композиционных материалов, которые могут быть использованы в строительной, авиационной, автомобильной, аэрокосмической, железнодорожной и других отраслях промышленности
Изобретение относится к способу получения эпоксиуретановой смолы, используемой при изготовлении смоляной составляющей заливочных компаундов, связующих для армированных пластиков, лаков и эмалей, а также в качестве смоляного компонента бронепокрытий реактивных снарядов и других целей
Наверх