Преобразователь неэлектрических величин в цифровой код

 

Изобретение относится к устройствам преобразования и цифровых измерений неэлектрических величин и позволяет повысить разрешающую способность и точность измерения массы, силы, давления, деформации и других величин за счет исключения из результата измерения случайной составляющей погрешности, обусловленной избыточным шумом усилителя выходного сигнала мостового датчика. Цель - повышение разрешающей способности и точности - достигается за счет того, что с помощью кварцевого генератора, двух делителей частоты, переключателя полярности, двух ключей, триггера, элемента ИСКЛЮЧАЮЩЕЕ ИЛИ, а также входного дифференциального усилителя, активного полосового фильтра, фазочувствительного демодулятора, активного фильтра нижних частот, модулятора и резистора обратной связи, формирователя опорного напряжения, интегратора и компаратора осуществляется формирование импульсного напряжения питания мостового датчика заданной частоты, усиление и узкополосная фильтрация выходного сигнала датчика и избыточного шума усилителя на этой частоте с последующей фазочувствительной демодуляцией и фильтрацией, а также стабилизацией коэффициента усиления посредством цепи отрицательной обратной связи, затем происходит аналого-цифровое преобразование выходного напряжения указанной цепи по принципу двухтактного интегрирования с длительностью интегрирования входной величины, кратной удвоенному периоду импульсного напряжения питания мостового датчика. Результат измерения формируется в счетчике импульсов и по окончании каждого измерения переносится в выходной регистр. 1 ил.

Изобретение относится к устройствам измерительной техники, а именно к тензометрическим преобразователям неэлектрических величин, и может быть использовано в системах измерения массы, силы, давления, деформации и т.д. при повышенных требованиях к чувствительности и точности измерения.

Известно цифровое тензометрическое устройство, содержащее мостовой тензодатчик, источник питания, выход которого соединен с входом делителя напряжения и с первым входом коммутатора, второй вход которого подключен к выходу делителя напряжения, а выход включен в диагональ питания тензодатчика, выход которого через предусилитель соединен с выходом время-импульсного преобразователя, две схемы совпадения, реверсивный счетчик и блок памяти, а также генератор импульсов, делитель частоты и блок управления, причем выход генератора импульсов подключен к управляющему входу блока управления, первому входу первой схемы совпадения, а через делитель частоты к первому входу второй схемы совпадения, выход время-импульсного преобразователя соединен с вторыми входами схем совпадения,выход первой схемы совпадения соединен с входом обратного счета реверсивного счетчика, выход второй схемы совпадения - с входом прямого счета реверсивного счетчика, а его выход соединен с входом блока памяти, управляющие входы коммутатора, схем совпадения, время-импульсного преобразователя, блока памяти и реверсивного счетчика подключены к соответствующим выходам блока управления (авт.св.СССР N 1195261, кл. G 01 P 7/00, 1985).

Однако известное устройство не обеспечивает высокой разрешающей способности, а следовательно, и высокой точности измерения вследствие воздействия на вход время-импульсного преобразователя избыточного шумового напряжения, характеризующего шум предусилителя.

В качестве прототипа принято устройство, содержащее источник питания, тензомост, масштабный усилитель и время-импульсный преобразователь, выполненный в виде последовательно соединенных резистора, измерительного ключа и интегратора, выход которого через компаратор соединен с одним из входов триггера полярности, выходы которого соединены с первыми входами схем совпадения, причем другие входы схем совпадения соединены с блоком управления, а выходы - с управляющими входами ключей опорного напряжения, составной дифференциальный усилитель с двухфазным выходом, соединенный через резисторы обратной связи со своим инвертирующими входами (авт.св. СССР N 639140, кл. Н 03 М 1/12, 1976). Для повышения точности преобразования в устройство введены переключатель полярности напряжения, триггер и элемент совпадения, один вход которого соединен с выходом компаратора, другой вход - с выходом блока управления, а выход - со счетным входом триггера, выходы которого соединены с первым и вторым входами переключателя полярности напряжения, третий и четвертый входы которого соединены с разнополярными выходами блока питания, а выходы подключены к первому и второму входам усилителя постоянного тока и к одной из диагоналей тензомоста. Измерение сигнала тензомоста производится за два последовательных цикла, которые отличаются между собой полярностью измеряемого сигнала и соответственно опорного напряжения. Напряжение дрейфа или низкочастотный шум предварительного усилителя в одном из циклов преобразования создает дополнительную погрешность одного знака, а в другом цикле - противоположного, что позволяет в суммарном результате измерения получить более полную компенсацию.

Недостаток этого устройства: не обеспечиваются высокая разрешающая способность и точность преобразования вследствие того, что коррекции подвержена только низкочастотная область шума (дрейфа нуля) предусилителя, а шум предусилителя более высоких частот оказывается нескорректированным.

Цель изобретения - повышение разрешающей способности и точности преобразования за счет введения ряда элементов, их взаимосвязи и связей с другими элементами, обеспечивающими управление устройством.

На чертеже приведена функциональная схема предлагаемого преобразователя.

Преобразователь содержит источник 1 питания, переключатель 2 полярности, мостовой датчик 3, входной дифференциальный усилитель 4, активный полосовой фильтр 5, фазочувствительный демодулятор 6, активный фильтр 7 нижних частот, модулятор 8 и резистор 9 обратной связи, первый 10 и второй 11 ключи, интегратор 12, компаратор 13, формирователь 14 опорного напряжения, кварцевый генератор 15, первый 16 и второй 17 делители частоты, триггер 18, элемент ИСКЛЮЧАЮЩЕЕ ИЛИ 19, счетчик 20 импульсов и выходной регистр 21, к выходу которого может подключаться регистратор (на чертеже не показан).

Преобразователь может быть выполнен на базе интегральных микросхем серий К140, К544, К561, К590, конденсаторов типа К72, К73 и резисторов типа С5-61, С2-29В.

Преобразователь работает следующим образом.

Мостовой датчик 3 получает питание через переключатель 2 полярности от высокостабильного источника 1 питания постоянного напряжения. Переключатель 2 полярности преобразует выходное напряжение источника 1 питания в последовательность разнополярных импульсов прямоугольной формы с частотой fм. Выходное напряжение, снимаемое с измерительной диагонали мостового датчика 3 и представляющее собой сумму пропорционального измеряемому параметру детерминированного сигнала и напряжения теплового шума тензорезисторов мостового датчика 3, поступает на вход входного дифференциального усилителя 4. Выходное напряжение входного дифференциального усилителя 4 без учета напряжения теплового шума транзисторов мостового датчика 3 равно Uк(t) = [Uв(t) + l(t)] K1, (1) где Uв(t) - выходное напряжение мостового датчика 3, пропорциональное измеряемому параметру; l(t) - напряжение избыточного шума, вносимого входным дифференциальным усилителем 4; K1 - коэффициент усиления входного дифференциального усилителя 4.

Избыточный шум l(t) можно представить в виде суперпозиции синусоидальных воздействий с неслучайными частотами и случайными амплитудами, что характерно при спектральном разложении стационарного эргодического случайного процесса. Спектральная плотность избыточного шума определяется известным выражением S()=S1+ , (2) где o - частота разграничения избыточного и белого шума; So - спектральная плотность на участке белого шума.

Отсюда, ограничившись рассмотрением низкочастотного участка избыточного шума, спектральная плотность избыточного шума на выходе входного дифференциального усилителя 4 составит Sк()=K21S. (3) Представив последовательность разнополярных импульсов прямоугольной формы в виде разложения в ряд Фурье, выражение (1) приводят к виду Uк(t)= +l(t)K1, (4) где Uа - амплитуда Uв(t). С выхода входного дифференциального усилителя 4 напряжение Uк(t) поступает на вход активного полосового фильтра 5, выполненного по схеме биквадратного полосового фильтра с коэффициентом усиления К2добротностью Q и частотой настройки п=м. Модуль передаточной функции активного полосового фильтра 5 имеет вид H1(j) =. (5)
Для выходного напряжения активного полосового фильтра 5 справедливо
Uп(t)=H1(j)Uк(t). (6)
Подставляя уравнения (4) и (5) в выражение (6) и проведя вычисления первой, третьей и пятой гармоник в Uп(t), видят, что при достаточно высоком значении добротности Q 100, выходное напряжение активного полосового фильтра 5 определяет только первая гармоника Uк(t), вклад третьей, пятой и т.д. гармоник крайне незначителен.

Отсюда Uп(t)=K1Ksinмt+ln(t),, (7) где ln(t)=H1(j)l(t).

Спектральная плотность шумового напряжения на выходе активного полосового фильтра 5 составляет
Sп()=H1(j)Sк(). (8)
С учетом выражений (3)и (5)
Sп()= . (9)
Таким образом, активный полосовой фильтр 5 предназначен для выделения и усиления первой гармоники детерминированной составляющей Uк(t), а также для выделения и усиления шумового напряжения l(t) на частоте м.

Выходное напряжение активного полосового фильтра 5 поступает на вход синфазного двухполупериодного фазочувствительного демодулятора 6 с частотой управляющего напряжения, равной fм. Для выходного напряжения демодулятора 6 справедливо
Uд(t)=Uп(t). (10)
Используя выражение (7) после преобразований, ограничиваются первыми двумя членами ряда:
Uд(t)= K1K(1-cos2мt)+lд(t), (11) где lд(t) - шумовое напряжение на выходе демодулятора 6.

Для определения спектральной плотности шумового напряжения на выходе демодулятора 6 определяют корреляционную функцию случайного процесса на его выходе по выражению, которое дает теория стационарных случайных функций:
Kд()= fм(t)lп(t)fм(t+)lп(t+)dt, (12) где fм(t) = ;
Т - интервал времени;
- приращение времени.

Подставив значения fм(t) и fм(t+ ) в выражение (12), после преобразований получают

Так как ряды в выражении (13) равномерно сходящиеся, проинтегрировав их почленно и приняв во внимание, что интервал [-T,T] кратен 2 , получают
Kд()=Kп(), (14) где Кп( ) - корреляционная функция случайного процесса на входе демодулятора 6.

Kп()= lп(t)lп(t+)dt.

Вследствие того, что спектральная плотность есть gреобразование Фурье от корреляционной функции, то для спектральной плотности шумового напряжения на выходе демодулятора 6 имеют
Sд() = Kп()edt (15)
Проведя почленное интегрирование равномерно сходящегося ряда, разложив e-j по формуле Эйлера, после преобразований получают

После подстановки уравнения (9) в выражение (16) и преобразований при условии, что 1 << Q, выражение для спектральной плотности шумового напряжения на выходе демодулятора 6 принимает вид
Sд = , (17) где к=2м.

Таким образом, выходное напряжение демодулятора 6, характеризуемое выражением (11), представляет собой суперпозицию продемодулированного синусоидального напряжения, пропорционального измеряемому параметру с явно выраженной второй гармоникой м, и шумового напряжения lд(t), спектральная плотность которого пропорциональна 2 м.

Выходное напряжение демодулятора 6 сглаживается активным фильтром 7 нижних частот и поступает одновременно на вход модулятора 8 обратной связи и на вход ключа 10. Модулятор 8 обратной связи совместно с резистором 9 обратной связи образуют параллельную отрицательную обратную связь по напряжению цепи, состоящей из активного полосового фильтра 5, демодулятора 6 и активного фильтра 7 нижних частот. Отрицательная обратная связь позволяет реализовать высокую стабильность коэффициента преобразования указанной цепи, при этом частотный спектр выходного напряжения активного фильтра 7 нижних частот не изменяется. На выходе модулятора 8 обратной связи формируется напряжение отрицательной обратной связи в виде последовательности разнополярных импульсов прямоугольной формы частотой fм, находящихся в противофазе с выходным напряжением входного дифференциального усилителя 4. Это напряжение отрицательной обратной связи преобразуется с помощью резистора 9 обратной связи в токовый сигнал, воздействующий на суммирующую точку активного полосового фильтра 5.

Управление переключателем 2 полярности, фазочувствительным демодулятором 6 и модулятором 8 обратной связи осуществляется от кварцевого генератора 15 через первый делитель 16 частоты с коэффициентом деления m1. Управляющее напряжение представляет собой последовательность прямоугольных импульсов с частотой fм = =f г/m1, где fг - частота генерации кварцевого генератора 15.

Тогда в общем виде для выходного напряжения активного фильтра 7 нижних частот и соответственно для спектральной плотности шумового напряжения на его выходе справедливо
Uф(t) = Uд(t) ; (18)
S= S, (19) где Hф(j) = - модуль передаточной функции активного фильтра 7 нижних частот с коэффициентом усиления К3 и постоянной времени Тф;
1+A - глубина отрицательной обратной связи цепи, состоящей из активного полосового фильтра 5, демодулятора 6 и активного фильтра 7 нижних частот.

Первый ключ 10 при наличии высокого уровня управляющего сигнала, поступающего с выхода второго делителя 17 частоты, имеющего коэффициент деления m2 и включенного на выходе первого делителя 16 частоты, подключает выходное напряжение активного фильтра 7 нижних частот к входу интегратора 12. Длительность открытого состояния ключа 10 tи равна половине периода последовательности прямоугольных импульсов частотой fи, имеющей место на выходе второго делителя 17 частоты:
tи = = = . (20)
В течение интервала tи происходит интегрирование выходного напряжения активного фильтра 7 нижних частот Uф(t) интегратором 12. Напряжение на выходе интегратора 12 по истечении интервала tи c учетом выражений (11) и (18) составляет
Uм = - (1-cos2мt)+lg(t)]dt, (21) где - постоянная времени интегратора 12.

При совместном рассмотрении выражений (20) и (21) нетрудно заметить, что при m2 = 1,2,...,n
Uм = - Uа- lд(t)dt. (22) Следовательно, Uм не зависит от переменной составляющей выходного напряжения активного фильтра 7 нижних частот, обусловленной второй гармоникой м, возникающей на выходе демодулятора 6.

Однако, с другой стороны, Uм не должен зависить от воздействующих на вход интегратор 12 помех сетевой частоты fс, а также импульсных помех несущей частоты м, генерируемых демодулятором 6, т.е. интервал tидолжен быть кратен Тс и Тм, отсюда вытекает требование, определяющее значение m2:
m2=2 . (23)
Управляющий импульс, возникающий на выходе второго делителя 17 частоты, передним фронтом устанавливает в нулевое состояние триггер 18 и счетчик 20 импульсов. В течение tи высокие уровни сигналов, поступающие с выхода второго делителя 17 частоты и инверсного выхода триггера 18 на входы элемента ИСКЛЮЧАЮЩЕЕ ИЛИ 19, определяют на его выходе нижний уровень сигнала, который держит второй ключ 11 в закрытом состоянии, а также запрещает поступление импульсов с выхода кварцевого генератора 15 в счетчик 20 импульсов. В момент окончания интервала tи низкий уровень сигнала, возникший на выходе второго делителя 17 частоты, переводит первый ключ 10 в закрытое состояние и, воздействуя на первый вход элемента ИСКЛЮЧАЮЩЕЕ ИЛИ 19, вызывает на его выходе управляющий сигнал высокого уровня, который, поступая одновременно на управляющие входы второго ключа 11 и счетчика 20 импульсов, переводит второй ключ 11 в открытое состояние и разрешает поступлению импульсов частотой fг с выхода кварцевого генератора 15 в счетчик 20 импульсов. С этого момента начинается интервал времени tх.

В течение интервала tх с выхода формирователя 14 опорного напряжения через открытый второй ключ 11 на вход интегратора 12 поступает опорное напряжение Uо противоположной полярности Uф(t). Формирователь 14 опорного напряжения подключен парафазно к источнику 1 питания, что позволяет реализовать пропорциональную зависимость Uо от питающего мостовой датчик 3 напряжения и тем самым компенсировать влияние нестабильности этого напряжения на результат измерения. Длительность интервала tх определяется временем разряда конденсатора интегратора 12, разряд которого продолжается до тех пор, пока напряжение на нем не станет равным нулю (момент срабатывания компаратора 13). Очевидно, что
Uм= tx. (24)
В момент окончания интервала tх на выходе компаратора 13 вырабатывается импульс, устанавливающий передним фронтом в единичное состояние триггер 18, низкий уровень сигнала, возникший на инверсном выходе которого, воздействуя на второй вход элемента ИСКЛЮЧАЮЩЕЕ ИЛИ 19, вызывает на его выходе низкий уровень управляющего сигнала, который переводит второй ключ 11 в закрытое состояние и прекращает счет импульсов в счетчике 20 импульсов.

Количество импульсов, поступившее с выхода кварцевого генератора 15 в счетчик 20 импульсов за интервал tх
N=fгtx=mтf. (25)
Для дисперсии шумового напряжения на выходе интегратора 12 справедливо
Dи= Hи(j)Sфd, (26) где Hи(j) = - модульпередаточной функции аналого-цифрового преобразователя двухтактного интегрирования с интервалом времени интегрирования входного напряжения, равным tи, при частоте входного напряжения, равной к=2м.

Однако согласно выражению (20) tи= , тогда при m2, равном любому целому числу, Hи(j)= 0 , следовательно, в соответствии с выражением (26) дисперсия шумового напряжения на выходе интегратора 12 Dи = 0, отсюда
lд(t)dt=0. (27)
Подставив уравнение (22) в уравнение (25), с учетом выражения (27) получают
N = . (28)
Таким образом, по истечении интервала tх количество импульсов N, зафиксированное в счетчике 20 импульсов, пропорционально амплитудному значению выходного напряжения мостового датчика 3 Uв(t), а значит, пропорционально измеряемому параметру. Случайная составляющая погрешности измерения, создающаяся напряжением избыточного шума, вносимым входным дифференциальным усилителем 4, и характеризующаяся дисперсией шумового напряжения на выходе интегратора 12 Dи, полностью исключается из результата измерения.

Следовательно, достигается предельно высокая разрешающаяся способность измерения, ограничиваемая только напряжением теплового шума на выходе мостового датчика 3, которое согласно формуле Найквиста определяется значением сопротивления тензорезисторов мостового датчика 3.

Импульсом, возникающим на прямом выходе триггера 18 в момент срабатывания компаратора 13 и заканчивающимся моментом формирования интервала следующего измерения, результат измерения, сформированный в счетчике 20 импульсов, переносится в выходной регистр 21.


Формула изобретения

ПРЕОБРАЗОВАТЕЛЬ НЕЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН В ЦИФРОВОЙ КОД, содержащий источник питания, выходы которого подключены соответственно к входам формирователя опорного напряжения и переключателя полярности, выходы которого соединены с питающей диагональю мостового датчика, измерительная диагональ которого подключена к входам входного дифференциального усилителя, первый и второй ключи, выходы которых объединены и подключены к входу интегратора, информационный вход второго ключа соединен с выходом формирователя опорного напряжения, а выход интегратора через компаратор соединен с установочным входом триггера, отличающийся тем, что, с целью повышения разрешающей способности и точности, в него введены последовательно соединенные активный полосовой фильтр, фазочувствительный демодулятор и активный фильтр нижних частот, а также модулятор обратной связи, элемент обратной связи, выполненный на резисторе, кварцевый генератор, два последовательно соединенных делителя частоты, элемент ИСКЛЮЧАЮЩЕЕ ИЛИ, счетчик импульсов и выходной регистр, при этом выход входного дифференциального усилителя подключен к первому входу активного полосового фильтра, а выход активного фильтра нижних частот подключен к информационным входам первого ключа и модулятора обратной связи, выход которого через резистор обратной связи соединен с вторым входом активного полосового фильтра, выход кварцевого генератора подключен к счетному входу счетчика импульсов и входу первого делителя частоты, выход второго делителя частоты подключен к управляющему входу первого ключа, к первому входу элемента ИСКЛЮЧАЮЩЕЕ ИЛИ, к входам сброса счетчика импульсов и триггера, прямой выход которого соединен с управляющим входом выходного регистра, а инверсный выход - с вторым входом элемента ИСКЛЮЧАЮЩЕЕ ИЛИ, выход которого подключен к управляющим входам второго ключа и счетчика импульсов, информационные выходы последнего из которых соединены с соответствующими информационными входами выходного регистра, а управляющие входы переключателя полярности, фазочувствительного демодулятора и модулятора обратной связи объединены и подключены к выходу первого делителя частоты.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к информационно-измерительной технике, может быть использовано в системах автоматического регулирования, в частности, для преобразования частотных сигналов, и позволяет обеспечивать увеличение крутизны преобразования частоты в напряжение и снижение уровня пульсации выходного сигнала

Изобретение относится к вычислительной технике

Изобретение относится к числовому программному управлению и может быть использовано в системах управления координатными перемещениями исполнительных органов станков

Изобретение относится к технике построения АЦП, преназначенных для кодирования мгновенных значений быстропротекающих процессов

Изобретение относится к цифровой информационно-измерительной технике для сопряжения вычислительных машин с аналоговыми каналами

Изобретение относится к устройствам автоматики и может найти применение в тяжелых условиях, требующих полной герметизации электрических контактов

Изобретение относится к системам передачи информации по каналам связи и может быть использовано в устройствах декодирования по алгоритму Витерби

Изобретение относится к вычислительной технике и может быть использовано в системах связи и обработки информации, оперирующих с модулярными кодами (кодами в системе остаточных классов - СОК)

Изобретение относится к аналого-цифровым преобразователям (АЦП) и измерительной технике и может применятся при измерениях в машиностроении

Изобретение относится к устройствам сопряжения аналоговых и цифровых сигналов, а именно к аналого-цифровым преобразователям уравновешивающего типа, и может быть использовано для обработки электрокардиограмм, электроэнцефалограмм, а также других аналоговых сигналов в медицине и других отраслях науки и техники

Изобретение относится к контрольно-измерительной технике и предназначено для автоматизации измерения и контроля различных неэлектрических величин, которые могут быть преобразованы из энергии внешнего источника одного вида в энергию электрическую, используемую в системах сбора и обработки данных и в системах управления, работающих в реальном масштабе времени измерения

Изобретение относится к контрольно-измерительной технике и предназначено для автоматизации измерения и контроля различных неэлектрических величин, которые могут быть преобразованы из энергии внешнего источника одного вида в энергию электрическую, используемую в системах сбора и обработки данных и в системах управления, работающих в реальном масштабе времени измерения

Изобретение относится к вычислительной технике, в частности к выполнению операций в полях Галуа, например, в устройствах декодирования кодов Рида-Соломона

Изобретение относится к электротехнике и может быть использовано для автоматизации управления реверсивными электроприводами протяженных конвейеров возвратно-поступательного движения

Изобретение относится к способу обработки цифровых сигналов, а точнее к процессам и схемам преобразования аналоговых сигналов в цифровые представления этих аналоговых сигналов

Изобретение относится к измерительной технике и может быть использовано в системе преобразования сигнала из аналоговой формы в цифровую

Изобретение относится к автоматике и вычислительной технике и может быть использовано для связи аналоговых источников информации с цифровым вычислительным устройством
Наверх