Устройство для выращивания кристаллов сложных полупроводников

 

Использование: в области кристаллографии при выращивании кристаллов сложного полупроводника из паровой фазы методом осаждения в низкотемпературных установках. Сущность изобретения: устройство содержит ампулу для исходного вещества, размещенную в корпусе. Коаксиально ампуле установлен нагреватель. Между нагревателем и ампулой расположено средство регулирования градиента температуры, выполненное в виде цилиндрического экрана. Экран установлен с возможностью перемещения. Нагреватель выполнен переменным по толщине из материала на углеродной основе и прилегающим к ампуле в нижней ее части. Устройство снабжено основным и дополнительным средствами визуального наблюдения за ростом кристаллов. Основное средство визуального наблюдения расположено в области кристаллизации, а дополнительное - в нижней части ампулы, в области размещения исходного материала. Устройство обеспечивает повышение качества кристаллов за счет создания однородного температурного поля. Для увеличения размеров выращиваемых кристаллов за счет сужения зоны роста в нижней части цилиндрического экрана выполнены отверстия. 1 з.п. ф-лы, 3 ил.

Изобретение может использоваться в области кристаллографии для выращивания кристаллов сложного полупроводника из паровой фазы методом осаждения в низкотемпературных установках.

Известна установка, предназначенная для получения полупроводниковых материалов [1]. В рабочей камере этой установки создают разные температурные зоны: "горячую" изометрическую, градиентную и "холодную" изометрическую. Зону нагрева формируют три независимо управляемых нагревательных узла, расположенных по длине капсул с исходным веществом. В рабочую камеру можно загрузить одновременно три капсулы. Каждый нагревательный узел выполнен в виде спирали, охватывающей сразу три капсулы.

Такое конструктивное решение имеет существенный недостаток: охватывающий три капсулы нагреватель создает в каждой из них неоднородное по сечению тепловое полет, следовательно, приводит к неоднородному распределению примеси в растущем кристалле.

Известна установка для выращивания кристаллов сложного полупроводника [2] , содержащая ампулу с двумя нагревателями, первый из которых окружает ампулу снаружи, а второй может перемещаться между ампулой и первым нагревателем, а также имеется система визуального наблюдения за ростом кристалла. Первый нагреватель обеспечивает распределение температуры по всему объему ампулы и создает три температурные зоны: "горячую" изотермическую, градиентную и "холодную" изометрическую. Второй нагреватель позволяет регулировать температуру в ограниченном объеме ампулы, соответствующем выбранному участку роста кристалла.

В этой установке нагревательный узел охватывает только одну ампулу и, следовательно, исключается неоднородность по сечению теплового поля.

Недостатком известной установки является следующее. Конструктивное выполнение нагревательного узла обеспечивает недостаточную воспроизводимость условий, при которых растет кристалл с необходимыми свойствами. Система визуального наблюдения позволяет следить только за ростом кристалла, не контролируя его качества.

Целью изобретения является повышение качества кристаллов за счет создания однородного температурного поля, а также увеличение размеров выращиваемых кристаллов за счет сужения зоны роста.

Указанная цель достигается тем, что в установке для выращивания кристаллов сложного полупроводника, содержащей ампулу с исходным веществом, нагреватель, корпус, систему визуального наблюдения, нагреватель выполнен из материала на углеродной основе, переменным по толщине и непосредственно прилегающим к ампуле в областях исходного вещества и паровой фазы, передвижной цилиндрический экран с радиатором, размещенный между нагревателем и ампулой в области кристаллизации, может продольно перемещаться в интервале от середины ампулы до "холодной" зоны, а дополнительная система визуального наблюдения расположена в области ампулы с исходным веществом.

Оптимальным вариантом выполнения передвижного цилиндрического экрана является наличие отверстий по периметру экрана в зоне, примыкающей к ампуле в области кристаллизации, а между нагревателем и наружным корпусом находится крепежный корпус. Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается тем, что нагреватель из материала на углеродной основе, переменный по толщине, непосредственно прилегающий к ампуле, обеспечивает равномерный обогрев ампулы по всей поверхности, заданный градиент температуры устанавливается при помощи передвижного цилиндрического экрана с радиатором, дополнительная система визуального наблюдения расположена в области ампулы с исходным веществом, что позволяет контролировать качество выращиваемых кристаллов. Наличие отверстий по периметру экрана в зоне, примыкающей к ампуле в области кристаллизации, обеспечивает сужение зон кристаллизации, а наличие крепежного корпуса исключает взаимное перемещение ампулы, нагревателя и исходного вещества при динамических нагрузках.

На фиг. 1 изображена установка для выращивания кристаллов; на фиг. 2 - график распределения температуры вдоль продольной оси ампулы; на фиг. 3 - экран с отверстиями в нижней части.

Устройство для выращивания кристаллов содержит стеклянную (стекло "пирекс") ампулу 1 для исходного материала 2 (диодидом ртути). Ампула 1 размещена в переменном по толщине нагревателе 3 из материала на углеродной основе. Между нагревателем 3 и ампулой 1 в области кристаллизации расположен передвижной тонкостенный цилиндрический экран 4 с оребренным радиатором 5. С наружной стороны нагревателя 3 расположен узел крепления 6. Для электроизоляции нагревателя 3 от передвижного цилиндрического экрана 4 и узла крепления 6 используют фторопластовую прокладку 7. Между узлом крепления 6 и наружным корпусом 8 имеется воздушная теплоизолирующая прослойка 9. Средства визуального контроля расположены в областях кристаллизации 10 и исходного материала 2 и состоят из световодов 11 и 12 и ламп подсветки 13 и 14. Кристаллы образуются в области кристаллизации 10 по периметру ампулы 1. Для управления и контроля тепловым режимом устройства предусмотрены полупроводниковые датчики температуры 15. Соединение узла крепления 6 и наружного корпуса 8 осуществляют шпильками 16. Электрическими выводами служат винт 17 и одна из шпилек 16. Передвижной экран 4 может иметь отверстия 18 по периметру в зоне, примыкающей к ампуле 1 в области кристаллизации 10.

На фиг. 2 представлен диапазон изменения градиента температуры. В области исходного материала 2 и паровой фазы 19 температуру устанавливают в пределах от 90 до 120оС. От начала области кристаллизации 10 до конца холодной зоны 20 прямая 21 соответствует 3 град/cм, а прямая 22-10 град/см.

Устройство работает следующим образом.

Стеклянную ампулу 1 для исходного материала 2 закрепляют одним концом в передвижном цилиндрическом экране 4, а другим концом помещают в нагреватель 3 из материала на углеродной основе. После этого нагреватель 3 электроизолируют фторопластовой прокладкой 7 и всю систему помещают в узел крепления 6. При помощи шпилек 16 закрепляют узел крепления 6 и наружный корпус 8, а затем подключают электрические выводы нагревателя 3 к одной из шпилек 16 и винту 17. Средства визуального наблюдения устанавливают в областях кристаллизации 10 и исходного материала 2. Положение передвижного цилиндрического экрана 4 фиксируют относительно ампулы 1. Регулировка положения экрана 4 обеспечивает достижение заданного градиента температуры для каждого вида исходного вещества. При подаче тока на нагpеватель 3 по длине ампулы формируют три температурные зоны: "горячую" изометрическую (области исходного вещества и паровой фазы), градиентную (область кристаллизации) и "холодную" неконтролируемую. В "горячей" изометрической зоне устанавливается температура в пределах 90-120оС. Исходный материал 2 испаряется и осаждается в виде кристаллов в области кристаллизации 10. Управление и контролирование тепловым режимом осуществляют при помощи полупроводниковых датчиков температуры 15. При помощи средства визуального наблюдения, расположенного в области кристаллизации 10, можно следить за процессом роста кристаллов. При помощи дополнительного средства визуального наблюдения, расположенного в области исходного материала 2, через световод 12 следят за изменением цвета исходного вещества от ярко-розового до грязно-желтого. При изменении цвета исходного вещества необходимо прекратить процесс роста кристаллов, так как далее выращиваемые кристаллы загрязняются примесями исходного вещества.

Определенное конструктивное выполнение нагревателя и передвижного цилиндрического экрана позволяет обеспечить точную регулировку температурных полей для направленной кристаллизации, что позволяет повысить воспроизводимость условий, при которых растет кристалл, а дополнительная система визуального наблюдения позволяет исключить загрязнение выращиваемых кристаллов примесями исходного вещества, причем заявляемая установка не требует громоздкой системы управления тепловым режимом.

Наличие отверстий по периметру передвижного цилиндрического экрана обеспечивает сужение зон кристаллизации, что способствует увеличению размера выращиваемых кристаллов.

Формула изобретения

1. УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ СЛОЖНЫХ ПОЛУПРОВОДНИКОВ, содержащее размещенную в корпусе ампулу для исходного материала, расположенный коаксиально ей нагреватель, средство регулирования градиента температуры, установленное между нагревателем и ампулой с возможностью перемещения, и средство визуального наблюдения за ростом кристаллов, отличающееся тем, что с целью повышения качества кристаллов путем создания однородного температурного поля, устройство снабжено дополнительным средством визуального наблюдения, размещенным в нижней части ампулы, и узлом крепления ампулы, установленным между нагревателем и корпусом, нагреватель выполнен переменным по толщине из материала на углеродной основе и прилегающим к ампуле в нижней ее части, а средство регулирования градиента температуры выполнено в виде цилиндрического экрана.

2. Устройство по п.1, отличающееся тем, что, с целью увеличения размеров выращиваемых кристаллов путем сужения зоны роста, в нижней части цилиндрического экрана выполнены отверстия.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к полупроводниковой технике и может быть использовано для получения полупроводниковых пленок из многокомпонентных селективно испаряющихся материалов

Изобретение относится к оборудованию для получения материалов и многослойных структур полупроводниковых соединений
Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов. Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого граната ионами аргона, распыление мишени на подложку с дальнейшим отжигом полученной пленки, при этом используют подложку сложнозамещенного галлиевого граната, процесс распыления осуществляют на подогретую до температуры 800-850°C подложку, в процессе распыления осуществляют подачу в область подложки контролируемого потока ионов кислорода, а полученные пленки отжигают в атмосфере кислорода в течение 0,5-1,0 час при температуре 700-750°C и нормальном атмосферном давлении. Изобретение позволяет повысить качество получаемых наноразмерных пленок Bi-содержащих ферритов-гранатов, а также величину удельного фарадеевского вращения. 1 табл., 1 пр.
Изобретение относится к технологии получения наноразмерных пленок мультиферроиков и может найти применение в производстве высокодобротных магнитооптических устройств обработки и хранения информации, магнитных сенсоров, емкостных электромагнитов, магнитоэлектрических элементов памяти, невзаимных сверхвысокочастотных фильтров. Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки ионами аргона, распыление мишени на подложку с дальнейшим отжигом полученной пленки, при этом используют подложку титаната стронция, процесс распыления осуществляют на подогретую до температуры 700-750°C подложку, в процессе распыления осуществляют подачу в область подложки контролируемого потока ионов кислорода, а полученные пленки отжигают в атмосфере кислорода в течение 1,0 час при температуре 500-550°C и нормальном атмосферном давлении. Изобретение позволяет получать монокристаллические наноразмерные пленки мультиферроиков состава BiFeO3 и RxBi1-xFeO3 (где R- Nd, La, Pr в количестве 0,1-0,3 форм.ед.). 1 табл., 1 пр.

Изобретение относится к конструкционным изделиям ИК-оптики, обеспечивающим, наряду с основной функцией пропускания излучения в требуемом спектральном диапазоне, защитные функции приборов и устройств от воздействий внешней среды. Способ включает выращивание заготовок селенида цинка путем испарения исходного порошкообразного или компактированного сырья, конденсацию паров на нагретую подложку, для чего в контейнере для выращивания заготовок селенида цинка дополнительно осуществляют промежуточную конденсацию паров, обеспечивая пропускание паров через лабиринт, образованный в рабочем пространстве контейнера, в виде пластины с выступами, с помощью чего прохождение пара к подложке происходит по непрямолинейной извилистой траектории, способствующей очистке конденсата от твердых примесей, и далее через фильтр из углеграфитовой ткани, закрепленный между графитовыми кольцами, с последующим реиспарением и переносом пара на подложку, причем конденсация паров происходит на подложку, нагретую до 1030-1070°С, со скоростью 0,2-0,5 мм/час, после чего выращенную заготовку селенида цинка охлаждают и извлекают из ростовой установки, помещают в установку-газостат и проводят горячее изостатическое прессование при температуре 1050-1150°С и давлении инертного газа 150-200 МПа в течение 2-3,5 часов. Технический результат изобретения состоит в изготовлении монолитной заготовки в виде круглой пластины или сферического вогнутого сегмента из поликристаллического селенида цинка, обладающих повышенной химической чистотой и оптической однородностью по спектральному пропусканию по всей площади выращенной заготовки, расширенным спектральным диапазоном прозрачности с высоким пропусканием в видимой и ИК-областях спектра в оптических деталях, изготовленных из данных заготовок. 2 з.п. ф-лы, 3 ил., 1 табл., 1 пр.

Изобретение относится к микроэлектронике и касается технологии получения монокристаллического SiC - широко распространенного материала, используемого для изготовления интегральных микросхем. Способ включает размещение в камере роста 1 тигля 6 с источником SiC 12 и закрепленной на крышке 7 тигля 6 затравочной пластиной SiC 11, создание в камере роста 1, путем ее нагрева нагревателем 4, с учетом теплоизолирующей способности теплового экрана 3, необходимого осевого распределения температуры, обеспеченного высокими градиентами температуры в верхней и нижней зонах камеры роста и низкими градиентами температуры в зоне максимального нагрева, находящейся между верхней и нижней зонами камеры роста, в которой при температуре, обеспечивающей сублимацию, расположен рабочий объем тигля, при этом сублимацию проводят в тигле 6, крышка 7 которого закреплена с сохранением рабочего объема тигля на уступе, выполненном на внутренней поверхности боковых стенок тигля, высота Н которых превышает продольный размер h рабочего объема тигля, а часть боковых стенок, находящихся над крышкой 7 тигля 6, расположена в верхней зоне камеры роста таким образом, что торец 10 боковой стенки тигля размещен при температуре от 1000 до 1500°С. Способ позволяет увеличить выход качественных монокристаллических слитков SiC и снизить затраты на его проведение. 5 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к микроэлектронике и касается технологии получения монокристаллического SiC - широко распространенного материала, используемого для изготовления интегральных микросхем. Способ включает сублимацию источника SiC, размещенного в тигле, на пластину затравочного монокристалла SiC, размещенную на держателе в форме плоского кольца, при этом на пластину затравочного монокристалла SiC со стороны, не предназначенной для роста монокристаллического слитка SiC, наносят один или несколько слоев, обеспечивающих термохимическую стабильность и заданные температурные условия на поверхностях пластины затравочного монокристалла SiC, а держатель с пластиной затравочного монокристалла SiC устанавливают в тигле таким образом, чтобы поверхность пластины, предназначенная для роста слитка монокристаллического SiC, была обращена внутрь тигля и контактировала при проведении сублимации с газовой средой внутри тигля. По окружности внутренней цилиндрической поверхности плоского кольца держателя периодически выполняют выступы шириной h=(1-3)⋅t и длиной S=(1-10)⋅h, торцы которых снабжены уступами глубиной k=0,3-1 мм и шириной t=0,5-2,0 мм, для размещения пластины затравочного монокристалла SiC толщиной Н, превышающей глубину уступа k, а сверху на держателе с пластиной с нанесенными слоями размещают пластину из терморасширенного графита толщиной, превышающей величину (Н-k), и далее фиксируют прижимным элементом в виде жесткой пластины толщиной 1,5-8 мм и стопорного кольца из термостабильных материалов. Технический результат заключается в улучшении качества слитка монокристаллического SiC за счет снижения упругих напряжений в пластине затравочного монокристалла SiC и достижения однородной скорости роста по всей поверхности пластины затравочного монокристалла с образованием почти плоского фронта кристаллизации. 6 ил., 1 табл.
Наверх