Способ очистки углеводородных газов от меркаптанов

 

Изобретение относится к процессам очистки углеводородных газов, например, газов регенерации цеолитов установки очистки природного газа от меркаптанов, и может быть использовано в газоперерабатывающей, нефтяной и химической промышленности. Сущность изобретения заключается в том, что способ очистки углеводородных газов меркаптанов путем окисления до элементарной серы осуществляют в присутствии железохромцинкового катализатора при 200°С, причем исходный газ делят на два потока в объемном соотношении 5 - 10 : 1, первый из которых направляют на окисление, а второй смешивают с продуктами окисления в объемном соотношении в пересчете на меркаптаны и диоксид серы, равном 1,5 - 2,2 : 1 соответственно, и полученную смесь пропускают через оксидный катализатор, содержащий, мас.%: оксид титана 70 - 85 и оксид алюминия 15 - 30. Газовую смесь пропускают через катализатор при объемной скорости газа 4000-6000 ч-1 при 160 - 200°С. Окисление осуществляют при массовом соотношении этилмеркаптана и кислорода воздуха, равном 2 : 1,1 - 1,2 соответственно. 3 з.п. ф-лы, 1 табл.

Изобретение относится к процессам очистки углеводородных газов, например газов регенерации цеолитов установки очистки природного газа от меркаптанов, и может найти свое применение в газоперерабатывающей, нефтяной и химической промышленности.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ демеркаптанизации углеводородных газов, содержащих 0,5-2,1 об. % этилмеркаптана, газофазным окислением на железооксидном катализаторе кислородом воздуха в среде гексана при 80-250оС, объемных скоростях 1300-9200 ч-1 при соотношении этилмеркаптан:кислород воздуха 2:1,1 с получением основного продукта реакции - элементарной серы и дисульфидов и содержанием в продуктах окисления побочного продукта - сернистого ангидрида. В качестве железооксидного катализатора используют катализатор, содержащий 30% оксида железа, 45% оксида хрома и 25% оксида цинка. Содержание серы, дисульфидов и сернистого ангидрида определяли по общепринятым методикам. По результатам анализа селективность серы (элементарной и дисульфидной) в пересчете на исходную меркаптановую серу 88%, содержание в продуктах окисления побочного продукта - сернистого ангидрида 0,14 об.%.

Недостатками способа являются содержание сернистого ангидрида в демеркаптанизированном газе и невысокая селективность превращения этилмеркаптана в серу, составляющая 88%.

Целью изобретения является повышение селективности процесса по сере в пересчете на исходную меркаптановую серу.

Цель достигается способом очистки углеводородных газов от меркаптанов, включающих их окисление до элементарной серы и дисульфидов в присутствии оксидного железохромцинкового катализатора при 200оС, в котором исходный газ делят на два потока в объемном соотношении 5-10:1, первый из которых направляют на окисление, а второй смешивают с продуктами окисления в объемном соотношении в пересчете на меркаптановую серу и диоксид серы, равном 2: 1 соответственно, и полученную смесь пропускают через оксидный катализатор, содержащий (мас.%) 70-85 оксида титана и 15-30 оксида алюминия. При этом газовую смесь пропускают через катализатор при объемной скорости газа 4000-6000 ч-1. Пропускание газовой смеси ведут при 160-220оС. Окисление осуществляют при массовом соотношении меркаптанов и кислорода воздуха, равном 2:1,1-1,2.

Отличиями предложенного способа от известных являются подача продуктов окисления, содержащих 0,1-1,6 об.% диоксида серы, на контактирование с исходным газом, содержащим 0,01-10 об.% меркаптанов, в определенном соотношении компонентов и пропускание полученной смеси через оксидный алюмотитановый катализатор при определенном соотношении компонентов. Именно на катализаторе данного состава взаимодействуют меркаптаны с диоксидом серы, адсорбируясь на активных центрах поверхности катализатора, образующиеся продукты при 160-220оС и в объемном соотношении в пересчете на меркаптаны и диоксид серы, равном 1,5-2,2:1, десорбируются с поверхности катализатора, не оказывая тормозящего действия на процесс. Указанная совокупность отличий позволяет достичь повышения селективности процесса по сере в пересчете на исходную меркаптановую серу.

При проведении поиска не установлены известность приема введения в продукты окисления исходного газа, содержащего меркаптаны, и параметры этого процесса, что позволяет считать предлагаемый способ соответствующим критерию "существенные отличия".

П р и м е р 1. Углеводородный газ состава, мас.%: CH4 91,1; C2H4 4; C3H8 1,1; C4H10 0,52; C5H12 0,26; CO2 0,12; N2 2, меркаптаны 0,9 в количестве 6 м3 делят на два потока в объемном соотношении 7,5:1. Первый поток в количестве 5,3 м3 подают на газофазное окисление меркаптанов, которое осуществляют путем его пропускания через слой оксидного катализатора, содержащего, мас. %: Fе2O3 30, Cr2O3 45, ZnO 25. Одновременно в слой катализатора подают воздух 0,125 м3/ч при объемном соотношении меркаптанов и кислорода воздуха, равном 2:1,15. Окисление ведут при 200оС и объемной скорости газа 9000 ч-1. В результате получают продукт окисления, содержащий, мас.%: серы (смесь элементарной серы и дисульфидов) 0,8 и диоксид серы 0,2. Серу и дисульфиды отделяют конденсацией, а продукты окисления в количестве 5,3 м3 смешивают с вторым потоком исходного газа в количестве 0,7 м3 при соотношении меркаптанов и диоксида серы 2:1 соответственно и пропускают через слой катализатора, содержащего, мас.%: оксид титана 75, оксид алюминия 25 с объемной скоростью газа 5000 ч-1 при температуре 180оС с получением демеркаптанизированного углеводородного продукта, содержащего смесь серы и дисульфидов 0,3 мас. %, которые отделяют конденсацией. Продукты конденсации первого и второго потоков смешивают и направляют потребителю для производства одорантов и полупродуктов органического синтеза. Селективность процесса по сере в пересчете на исходную меркаптановую серу 100%. Сернистый ангидрид в отводимом углеводородном газе отсутствует.

П р и м е р 2. Аналогично примеру 1 исходный углеводородный газ делят на два потока в объемном соотношении 5:1, причем первый поток в количестве 5 м3 подают на газофазное окисление меркаптанов, которое осуществляют путем его пропускания через слой оксидного катализатора, содержащего, мас.%: Fl2O3 30; Cr2O3 45, ZnO 25. Одновременно в слой катализатора подают воздух 0,118 м3/ч при объемном соотношении меркаптанов и кислорода воздуха 2:1,1. Окисление ведут при 200оС и объемной скорости 5000 ч-1. В результате получают продукт окисления, содержащий (мас.%) серы (смесь элементарной серы и дисульфидов) 0,7 и диоксида серы 0,1. Серу и дисульфиды отделяют конденсацией, а продукты окисления в количестве 5 м3 смешивают с вторым потоком исходного газа в количестве 1 м3 при соотношении меркаптанов и диоксида серы 1,5: 1 соответственно и пропускают через слой оксидного катализатора, содержащего, мас.%: оксид титана 70, оксид алюминия 30, с объемной скоростью 4000 ч-1 при температуре 160оС с получением демеркаптанизированного углеводородного продукта, содержащего смесь серы и дисульфидов 0,1 мас.%. Полученную серу и дисульфиды отделяют и смешивают с серой и дисульфидами, выделенными при окислении первого потока углеводородного газа. Селективность по сере в пересчете на исходную меркаптановую серу 93,9%.

П р и м е р 3. Аналогично примеру 1 исходный углеводородный газ делят на два потока в объемном соотношении 10:1, причем первый поток в количестве 5,5 м3 подают на газофазное окисление меркаптанов, которое осуществляют путем его пропускания через слой оксидного катализатора, содержащего, мас.%: Fе2O3 30, Cr2O3 45, ZnO 25. Одновременно в слой катализатора подают воздух 0,257 м3/ч при объемном соотношении меркаптанов и кислорода воздуха 2:1,2. Окисление ведут при 200оС и объемной скорости газа 1300 ч-1. В результате получают продукт окисления, содержащий, мас.%: серы (смесь элементарной серы и дисульфидов) 0,9 и диоксид серы 0,1. Серу и дисульфиды отделяют конденсацией, а продукт окисления в количестве 5,5 м3 смешивают с вторым потоком исходного газа в количестве 0,5 м3 при соотношении меркаптанов и диоксида серы 2,2: 1 соответственно и пропускают через слой оксидного катализатора, содержащего, мас. % : оксид титана 85, оксид алюминия 15, с объемной скоростью 6000 ч-1 при температуре 220оС с получением демеркаптанизированного углеводородного продукта, содержащего смесь серы и дисульфидов 0,1 мас.%. Полученную серу и дисульфиды отделяют и смешивают с серой и дисульфидами, выделенными при окислении первого потока углеводородного газа. Селективность процесса по сере в пересчете на исходную меркаптановую серу 99,2%. Сернистый ангидрид в отводимом углеводородном газе отсутствует, но имеются непрореагировавшие меркаптаны.

Изменение параметров процесса, а именно при соотношении первого и второго потоков углеводородного газа 5: 1, объемной скорости окисления первого потока углеводородного газа 5000 ч-1, соотношении продуктов окисления первого потока SO2 и меркаптанов второго потока 1,5:1, температуре окисления смеси продуктов окисления первого потока и второго потока углеводородного газа 160оС, объемной скорости до смещения первого и второго потоков углеводородного газа 4000 ч-1 и объемном соотношении содержания меркаптанов первого потока и кислорода воздуха 2:1 приводит к снижению селективности процесса по сере в пересчете на исходную меркаптановую серу 93,9%. Проведение процесса при соотношении первого и второго потоков 7,5-10:1, объемной скорости окисления первого потока углеводородного газа 9000 ч-1 и 13000 ч-1, соотношении продуктов окисления первого потока - сернистого ангидрида и меркаптанов второго потока 2:1 и 2,2:1, температуре окисления 180 и 220оС, температуре окисления смеси продуктов окисления первого потока и второго потока углеводородного газа 180 и 220оС, объемной скорости до смешения продуктов окисления первого потока и второго потока углеводородного газа 5000 ч-1 и 6000 ч-1, объемном соотношении содержания меркаптанов первого потока и кислорода воздуха 2:1,15-1,2 приводит к 100%-ной селективности по сере в пересчете на исходную меркаптановую серу (см.таблицу).

При реализации заявленного способа могут быть достигнуты следующие преимущества: обеспечена 100%-ная селективность процесса по сере в пересчете на исходную меркаптановую серу, обеспечена возможность получения демеркаптанизированного газа из газов регенерации цеолитов установки очистки природного газа, что обеспечивает его промышленное использование.

Формула изобретения

1. СПОСОБ ОЧИСТКИ УГЛЕВОДОРОДНЫХ ГАЗОВ ОТ МЕРКАПТАНОВ, включающий их окисление кислородом до элементарной серы и ее соединений в присутствии оксидного железохромцинкового катализатора при 200oС, отличающийся тем, что исходный газ делят на два потока в объемном соотношении 5 - 10 : 1, первый из которых подают на окисление, а второй смешивают с продуктами окисления в объемном соотношении, равном 1,5 - 2,2 : 1 в пересчете на смесь меркаптанов и диоксида серы соответственно, и полученную смесь пропускают через оксидный катализатор, содержащий, мас.%: Оксид титана 70 - 85 Оксид алюминия 15 - 30 2. Способ по п.1, отличающийся тем, что газовую смесь второго потока и продуктов окисления пропускают через катализатор при объемной скорости газа 4000 - 6000 ч-1.

3. Способ по пп. 1 и 2, отличающийся тем, что газовую смесь второго потока и продуктов окисления пропускают через катализатор при 160 - 220oС.

4. Способ по пп. 1 - 3, отличающийся тем, что окисление осуществляют при массовом соотношении меркаптанов в пересчете на этилмеркаптан к кислороду 2 : 1,1 - 1,2 соответственно.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к оборудованию для получения сухих продуктов из растворов малых концентраций и может быть использовано в химической, пищевой и других отраслях промышленности

Изобретение относится к оборудованию для получения сухих продуктов из растворов малых концентраций и может быть использовано в химической, пищевой и других отраслях промышленности

Изобретение относится к смесителям для перемешивания различных сред, в частности к рабочим органам смесителя

Изобретение относится к способу очистки неочищенного газа, полученного из углеродистого материала с помощью процесса газификации, в котором очистка происходит во вторичной зоне, отделенной от газификатора процесса газификации

Изобретение относится к химической технологии, в частности к области концентрирования растворов путем упаривания

Изобретение относится к каталитическому сжиганию топлива, а именно к приготовлению катализаторов, используемых в каталитических приборах, предназначенных для обогрева бытовых и жилых помещений

Изобретение относится к целлюлозно-бумажной промышленности, а именно процессу очистки газовых конденсатов от серосодержащих соединений и может быть использовано в химической, нефтехимической, фармацевтической и других отраслях хозяйства

Изобретение относится к области теплотехники и может быть использовано в глиноземном производстве для упаривания алюминатного раствора

Изобретение относится к энергетике, а более конкретно к вспомогательным системам парогенерирующей установки атомной электростанции, а также может быть использовано в выпарных установках для упаривания перегретых солесодержащих жидкостей в металлургической, химической и других отраслях промышленности

Изобретение относится к способу получения раствора и, в частности к способу получения раствора целлюлозы в N-оксиде третичного амина

Изобретение относится к ионной технологии и может быть использовано в медицине, машиностроении, на транспорте, в том числе речном и морском, в автомобильной промышленности, сельском хозяйстве, авиации, космической технике, металлургии, энергетике

Изобретение относится к способу извлечения твердых остатков, находящихся в суспензии или в растворе текучей среды, которая включает в себя быстроиспаряющиеся компоненты, в частности воду

Изобретение относится к высокодисперсному сыпучему анионному поверхностно-активному веществу для моющих и/или очистительных средств, которое имеет микропористую структуру без пылеобразующих долей, причем его насыпная плотность составляет минимум 150 г/л, а содержание в нем остаточной воды - максимум 20 мас

Изобретение относится к оборудованию для выпаривания жидкости и может быть использовано в сахарной и других отраслях промышленности

Изобретение относится к производству оборудования для химической, пищевой, медицинской и биотехнологий, в частности вакуум-выпарных установок
Наверх