Сырьевая смесь для изготовления пористого заполнителя

 

Сущность изобретения: сырьевая смесь для изготовления пористого заполнителя содержит 99,4 - 99,7 мас.% туфсодержащего компонента следующего состава, мас.%: цеолит 20 - 40%; монтмориллонит 45 - 50%; кварц 5 - 20; кальцит 5 - 15% и карбид кремния 0,3 - 0,6. Характеристика пористого заполнителя: насыпная масса 225-270 кг/м3 , предел прочности на сжатие в цилиндре 1,78-2,1 кг/м2 , температура обжига 1120 - 1140°С. 1 табл.

Изобретение относится к строительным материалам, а именно к производству искусственного пористого заполнителя для легких бетонов.

Известен состав сырьевой смеси [1] для изготовления легкого заполнителя, включающий следующие компоненты, мас. % : туфодиамитовая порода 98,5-99,0 мазут 1,0-1,5 Недостатком данной смеси является то, что туфодиамитовая порода с содержанием опаловидного кремнезема 23-40% является редким и дефицитным сырьем. Кроме того, из известной сырьевой смеси нельзя изготовить пористый заполнитель с объемной насыпной массой меньше 500 кг/м3, что не позволит получать облегченные конструкционные бетоны. Известно, что мазут плохо гомогенизируется с массой, поэтому изготавливать пористый заполнитель с одинаковыми и близкими свойствами из сырьевой смеси по известному решению очень сложно.

Наиболее близкой является сырьевая смесь для изготовления пористого заполнителя [2], включающая следующие компоненты, мас.%: туф цеолитсодержащий вулканический пепло- вый 92-97 сталеплавильная пыль 3-8 Недостатком этой смеси является то, что для изготовления пористого заполнителя необходимо использовать туф с высоким содержанием цеолита - клиноптилолита (40-80 мас.%). Для данного состава требование высокого содержания цеолита обосновано тем, что в качестве добавки - газообразователя используется сталеплавильная пыль. Использование сталеплавильной пыли в качестве газообразователя возможно только при высокой реакционной способности системы в целом. Это условия соблюдается при достаточно большом содержании цеолита в породе, так как цеолиты несут в себе катионы - плавни Na+, K+, Ca2+, Mo2+ и др. катионы, нейтрализующие отрицательный заряд алюмокремнекислородного каркаса. Равномерное распределение этих катионов в цеолитах приводит к высокой реакционной способности системы.

Недостатками сырьевой смеси для изготовления пористого заполнителя известного решения являются высокая температура вспенивания 1190оС и невысокая механическая прочность заполнителя 1,19-1,3 МПа при насыпной плотности 300-325 кг/м3. Таким образом сталеплавильная пыль в качестве газообразователя может быть использована только в составах, содержащих туфы с высоким количеством цеолита.

Целью изобретения является повышение механической прочности и снижение температуры обжига.

Цель достигается тем, что сырьевая смесь для изготовления пористого заполнителя содержит следующие компоненты, мас.%: туфсодержащий компо- нент 99,4-99,7 карбид кремния 0,3-0,6, причем туфсодержащий компонент содержит, мас. % : цеолит - клиноптиломит 20-40 монтмориллонит 45-50 кальций 5-15 кварц 5-20 Большие запасы таких туфов находятся в Грузии - Карбазихевское месторождение, в Читинской области - Шивыртуйское (входит в одно месторождение и породами с высоким содержанием цеолита) и др.

Минеральный состав таких пород из-за высокого количества кальцита позволяет изготавливать пористый заполнитель при более низкой температуре 1120-1140оС, так как CaO, которая образуется при разложении кальцита, понижает температуру плавления алюмосиликатной системы. При отсутствии кварца составы с высоким содержанием кальцита не могут образовывать устойчивую пену. Шихта будет плавиться, но однородной равномерной системы пор не будет. За счет кварца система обогащается кремнеземом и вязкость расплава поддерживает пену при высокой температуре в устойчивом состоянии. Наличие в составе туфа 10-40 мас. % цеолита - клиноптилолита способствует оптимизации протекания процессов стеклования, а высокая реакционная способность цеолита способствует гомогенизации стекла. Это является основным фактором возможности получения пористого заполнителя с высокой механической прочностью. При температурах обжига 1120-1140оС в качестве газообразователя используют вещества с высокой температурой окисления, например карбид кремния.

Таким образом использование туфосодержащего материала, в котором в определенных соотношениях сочетаются кальцит-кварц-цеолит в сырьевой смеси, позволяет получать расплав с вязкостью, оптимальной для образования устойчивой алюмосиликатной пены при температуре интенсивного газовыделения за счет окисления карбида кремния.

Ниже приведен пример получения пористого заполнителя для легких бетонов из смеси Карбазихевского туфа (Грузия) и карбида кремния.

Химический состав Карабазихевского туфа, мас.%: SiO2 60,08; Al2О3 11,9; CaO 5,25; MgO 1,57; Na2O 1,46; K2O 1,25; Fe2O3 2,42; TiO2 0,357; п.п.п. 15,35.

Минеральный состав Карбазихевского туфа, мас. % : клиноптиломит 40; монтмориллонит 30; кварц 20; кальцит 10.

П р и м е р. Для изготовления пористого заполнителя готовят четыре состава смеси из измельченного туфсодержащего материала Карбазихевского месторождения с добавкой карбида кремния. Тонкость помола туфа характеризуется прохождением все пробы через сито 0,5 мм. Из сырьевой смеси пластическим способом формования при формовочной влажности 16-17% изготавливают сырцовые гранулы в виде цилиндров с диаметром и равной ему высотой 10 мм. Сырцовые гранулы подсушивают при 100оС в течение 60 мин, нагревают в муфельной печи при 700оС в течение 5 мин и обжигают в электропечи при температуре вспучивания 1120-1140оС в течение 10 мин. Остывание гранул производят в комнатных условиях.

Конкретные составы сырьевой смеси и физико-механические показатели пористого заполнителя из этих составов представлены в таблице.

Как видно из таблицы, предложенный состав сырьевой смеси позволяет изготавливать пористый заполнитель при более низкой температуре 1140-1120оС, чем по известному решению 1190оС. Снижение температуры производства на 50-70оС уменьшит энергетические затраты, расход топлива, а также увеличит срок службы футеровки печи. Изготовление пористого заполнителя, соответствующего высшей категории качества (ГОСТ 9759-83, регламентирует свойства керамзитового гравия) по прочностным свойствам при низких значениях насыпной плотности позволит изготавливать легкие бетоны с высокими прочностными характеристиками, что важно для изготовления несущих конструкций зданий в районах, неблагоприятных в сейсмическом отношении.

Формула изобретения

СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ПОРИСТОГО ЗАПОЛНИТЕЛЯ, включающая туфсодержащий компонент и добавку, отличающаяся тем, что, с целью повышения механической прочности и снижения температуры обжига, она содержит туфсодержащий компонент состава, мас.%: Цеолит-клиноптиломит 20 - 40 Монтмориллонит 45 - 50 Кальцит 5 - 15 Кварц 5 - 20 в качестве добаки - карбид кремния при следующем соотношении компонентов, мас.%:
Указанный туфсодержащий компонент 99,4 - 99,7
Карбид кремния 0,3 - 0,6

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к производству строительных материалов и может быть использовано для изготовления керамзита из смеси глинистого сырья и отходов производств

Изобретение относится к производству строительных материалов и может быть использовано для изготовления пористого заполнителя

Изобретение относится к строительным материалам и может быть использовано для изготовления легкого заполнителя из пород вулканического происхождения

Изобретение относится к строительным материалам и может быть использовано для изготовления пористого заполнителя легкого бетона

Изобретение относится к производству строительных материалов и может быть использовано для получения вспученного перлитового заполнителя и бетонной смеси на его основе

Изобретение относится к производ.- ству строительных материалов и может быть использовано для получения вспученного перлита с определением температуры и длительности нагрева вулканического водосодержащего сырья на стадии термоподготовки

Изобретение относится к области строительных материалов, а именно для получения изоляционно-декоративной штукатурной смеси

Изобретение относится к производству строительных материалов, в частности к способам производства заполнителей из кремнистых (опоки и трепела) камневидных пород для конструкционных бетонов
Изобретение относится к области строительства и непосредственно касается способа производства сухой строительной смеси

Изобретение относится к промышленности строительных материалов и может быть использовано промышленными и строительными организациями для огнезащиты строительных конструкций
Изобретение относится к производству сыпучих теплоизоляционных материалов из природного сырья - обсидиана, перлита и пехштейна. В способе производства вспученных пористых заполнителей путем обработки горных пород, состоящих из вулканического стекла, электромагнитным полем обработку производят полем с волновым числом 3400 см-1 и частотой 103·1012 Гц, резонансной для структурной воды и OH-групп в структуре стекла. В способе предварительно удаляют подвижную воду путем обработки электромагнитным полем с волновым числом в диапазоне 3000-3200 см-1 и частотой в диапазоне (91-97)·1012 Гц. Технический результат - увеличение объема вулканических стекол. 1 з.п. ф-лы, 4 пр.

Изобретение относится к промышленности строительных материалов и может быть использовано при производстве изделий из фиброгипсобетонного композита. Технический результат заключается в уменьшении удельного расхода гипса, повышении прочности и водостойкости гипсобетона. Сырьевая смесь для изготовления фиброгипсобетонного композита содержит смесь строительного гипса и портландцемента, вулканического пепла, базальтового волокна и воду при следующем соотношении компонентов, мас.%: гипсовое вяжущее 28,2-28,3; вулканический пепел 34,7-34,9; портландцемент 7,0-7,1; базальтовое волокно 1,1-1,5; вода - остальное. 2 табл.

Изобретение относится к области строительства и предназначено для покрытия скоростных трасс, аэродромов, площадок различного назначения, требующих высокой прочности покрытий, для ремонта дорожных покрытий, нанесения разметки на дорожные покрытия, а также для нанесения покрытий на поверхности, требующие уменьшения эффективности отражательной способности электромагнитного излучения. Технический результат - улучшение эксплуатационных свойств и расширение диапазона применения. Радиопоглощающая асфальтобетонная смесь, включающая битумное вяжущее, стабилизирующую добавку, наполнитель - щебень различного фракционного состава и мелкий наполнитель, с использованием радиопоглощающего материала, где в качестве радиопоглощающего материала используют щебень габбро-диабазовый и никельшлак и/или купершлак в виде песка и/или микрошариков, полученных по плазменной технологии, при следующем соотношении компонентов, масс. %: указанный щебень 5-70, битумное вяжуще 5-18, указанный никельшлак и/или купершлак 8-80, стабилизирующая добавка 6-16, другой наполнитель 2-18. Радиопоглощающее асфальтобетонное дорожное покрытие, выполненное многослойным, где нижний слой выполнен из указанной выше смеси, а верхний упрочняющий слой выполнен из смеси, содержащей вяжущее - эпоксидную композицию, никельшлак и/или купершлак в виде песка и/или микрошариков, выполненных по плазменной технологии, пигмент и другой наполнитель при следующем соотношении компонентов, масс. %: эпоксидная композиция 10-40, указанный никельшлак и/или купершлак 10-70, пигмент 0 или 1-10, другой наполнитель 0 или 1-12. Изобретение развито в зависимом пункте формулы. 2 н. и 1 з.п. ф-лы, 1 табл., 1 пр.

Группа изобретений относится к гипсовым панелям с пониженной массой и плотностью, с улучшенными теплоизоляционными свойствами. Гипсовый средний слой для панели, сформированный из смеси, содержащей: строительный гипс в количестве от примерно 1162 фунтов/тыс. кв. футов (примерно 5,7 кг/м3) до примерно 1565 фунтов/тыс. кв. футов (примерно 7,6 кг/м3); частицы вермикулита с высоким коэффициентом расширения в количестве до примерно 10% по массе строительного гипса, объемное расширение которых составляет примерно 300% или более относительно их начального объема после нагревания в течение примерно одного часа при температуре примерно 1560°F (примерно 850°C); крахмал в количестве до примерно 3% по массе строительного гипса; минеральные волокна, углеродные волокна и/или стекловолокна, при этом гипсовый средний слой, будучи расположенным между облицовочными листами, характеризуется плотностью, составляющей примерно 40 фунтов на кубический фут (примерно 640 кг/м3) или менее, показателем теплоизоляции, составляющим примерно 20 минут или более. Технический результат – получение гипсовых панелей с пониженной массой и плотностью, с улучшенными теплоизоляционными свойствами, устойчивостью к термоусадке и огнестойкостью. 2 н. и 13 з.п. ф-лы, 41 ил., 22 табл., 11 пр.
Наверх