Способ управления излучением твердотельного лазера

 

Использование: приборы квантовой электроники, в частности твердотельные лазеры. Сущность изобретения: в резонатор, образованный глухим и выходным зеркалами, установлены поляризатор и оптически активный лазерный элемент, помещенный в модулирующее магнитное поле соленоида, подключенного к блоку импульсов тока, при этом напряженность магнитного поля выбрана такой, что обеспечен угол поворота плоскости поляризации в лазерном элементе, равный (2р-1)90° при двойном проходе излучения лазера через него. 1 ил.

Изобретение относится к квантовой электронике и может быть использовано в импульсных твердотельных лазерах, в частности на гранате, стекле, фториде и т.п.

Известен способ управления излучением твердотельного лазера, включающий воздействие электрическим полем на ячейке Поккельса [1].

Недостатком этого технического решения является невозможность модуляции добротности резонатора лазера магнитным полем, сложность лазера и наличие дополнительных потерь в резонаторе при введении в него ячейки Поккельса.

Наиболее близким техническим решением к заявляемому изобретению является известный способ управления излучением твердотельного лазера, включающий воздействие магнитным полем вдоль оптической оси оптически активного элемента [2].

Недостатком прототипа является невозможность модуляции добротности лазера магнитным полем, сложность лазера и наличие дополнительных потерь в резонаторе при введении ячейки Поккельса.

Целью изобретения обеспечения модуляции добротности резонатора лазера магнитным полем, уменьшение оптических потерь в резонаторе лазера и его упрощение.

Цель достигается тем, что в известном способе управления излучением твердотельного лазера, включающем поворот плоскости поляризации при воздействии магнитным полем вдоль оптической оси оптически активного элемента, магнитным полем воздействуют на оптически активный лазерный элемент, а его напряженность выбирают такой, что при двойном прохождении излучения через лазерный элемент угол поворота плоскости поляризации излучения составляет (2p-1) /2, где p - целое число, при этом лазерный элемент помещают в резонаторе между глухим зеркалом и поляризатором, а накачку лазерного элемента осуществляют во время действия импульса магнитного поля.

На чертеже приведена блок-схема лазера.

Лазер содержит оптический резонатор, образованный глухим и выходным зеркалами 1 и 2 соответственно. Внутри резонатора расположены лазерный элемент 3 и поляризатор 4 (осветитель и блок накачки лазера не показаны). Элементы 3 расположен внутри соленоида 5, подключенного к блоку 6 импульсов тока, который синхронизован с блоком накачки.

Способ реализуется следующим образом. Все лазерные элементы обладают эффектом Фарадея. В связи с этим, если перед подачей импульса накачки лазера на лазерный элемент 3 воздействовать импульсным магнитным полем с напряженностью Н, обеспечивающей при двойном проходе излучения через элемент 3 угол поворота плоскости поляризации =2L H=(2p-1)90o, где - постоянная Верде лазерного элемента 3; L- его длина, то излучение не проходит через поляризатор 4 и генерации лазера не возникает. После окончания импульса магнитного поля угол поворота плоскости поляризации в элементе 3 становится равным 0, излучение полностью проходит через поляризатор 4 и формируется гигантский импульс. Таким образом, заявляемое изобретение обеспечивает модуляцию добротности лазера магнитным полем. Упрощение резонатора лазера и уменьшение оптических потерь в нем обусловлены исключением дополнительного элемента в резонаторе лазера-модулятора добротности.

Способ реализовывали при использовании лазерных элементов, изготовленных из различных известных материалов и обычно имеющих размеры диаметром 4 х 30 и 2 х 20 мм. Накачку осуществляли излучением импульсного лазера, а также полупроводникового инжекционного лазера. Лазерный элемент помещали в соленоид, подключенный к источнику мощных импульсов тока (до 50 А), синхронизованному с источником накачки (импульс накачки подавали с задержкой относительно импульса магнитного поля). Длительность импульса магнитного поля не превышала длительность импульса накачки. Во всех случаях формировался гигантский импульс, при этом снижались потери внутри резонатора и упрощался лазер.

Дополнительным преимуществом заявляемого изобретения является возможность создания миниатюрных лазеров с модуляцией добротности, что является проблемой при использовании для модуляции добротности ячеек Керра или Поккельса.

Формула изобретения

СПОСОБ УПРАВЛЕНИЯ ИЗЛУЧЕНИЕМ ТВЕРДОТЕЛЬНОГО ЛАЗЕРА,включающий поворот плоскости поляризации при воздействии магнитным полем вдоль оптической оси оптически активного элемента, отличающийся тем, что, с целью обеспечения модуляции добротности резонатора лазера магнитным полем, уменьшения оптических потерь в резонаторе лазера и его упрощения, импульсным магнитным полем воздействуют на оптически активный лазерный элемент, а его напряженность выбирают такой, что при двойном прохождении излучения через лазерный элемент угол поворота плоскости поляризации излучения составляет (2p - 1) / 2 , где p - целое число, при этом лазерный элемент помещают в резонаторе между глухим зеркалом и поляризатором, а накачку лазерного элемента осуществляют во время действия импульса магнитного поля.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к лазерной технике, в частности к угловым селекторам лазерного излучения

Изобретение относится к оптотехнике и может быть использовано для модуляции световых потоков, в частности для модуляции добротности резонатора лазера

Изобретение относится к квантовой радиофизике, включая нелинейную оптику, и касается вопросов получения генерации лазерного излучения с высокой направленностью излучения

Изобретение относится к квантовой электронике, а именно к лазерам с движущейся активной средой и непрерывным или квазинепрерывным возбуждением, и может быть использовано для получения мощного импульсно-периодического излучения для технологических применений, систем оптической локации и физических исследований, а также для расширения возможностей и повышения эффективности технологических лазерных установок

Изобретение относится к квантовой электронике, а именно к лазерам с движущейся активной средой и непрерывным или квазинепрерывным возбуждением, и может быть использовано для получения мощного импульсно-периодического излучения для технологических применений, систем оптической локации и физических исследований, а также для расширениия возможностей и повышения эффективности технологических лазерных установок

Изобретение относится к лазерной технике и может быть использовано в различных областях науки и техники, требующих перестраиваемого по частоте спектрально чистого лазерного излучения, в том числе в спектральных приборах

Изобретение относится к технической физике и может быть использовано в спектральной аппаратуре

Изобретение относится к нелинейной оптике и может быть использовано для обнаружения источников когерентного излучения при лидарных измерениях и в оптической локации

Изобретение относится к импульсным твердотельным лазерам, работающим в режиме с электрооптической модуляцией добротности, и может быть использовано для получения мощных импульсов лазерного излучения в наносекундном диапазоне длительностей импульса с частотами повторения импульсов до 100 Гц в видимом и ближнем инфракрасном, в том числе безопасном для человеческого зрения, спектральных диапазонах для целей нелинейной оптики, лазерной дальнометрии, оптической локации и экологического мониторинга окружающей среды

Изобретение относится к лазерной технике, а более конкретно к неодимовым лазерам, генерирующим в области 1,060,1 и 1,320,1 мкм

Изобретение относится к лазерной технике и может использоваться в системах лазерной локации, связи, обработки, передачи и хранения информации, а также при создании лазерных технологических установок для высокоточной обработки материалов

Изобретение относится к лазерной технике и может использоваться в системах лазерной локации, связи, обработки, передачи и хранения информации, а также при создании лазерных технологических установок для высокоточной обработки материалов и медицинской техники

Изобретение относится к лазерной технике

Изобретение относится к лазерной технике

Изобретение относится к лазерной технике и может быть использовано в технологических, медицинских, метрологических, других лазерных установках и установках для научных исследований

Изобретение относится к лазерно-интерферометрическим детекторам гравитационно-индуцированного сдвига частоты генерации и может быть использовано для измерения первой производной потенциала гравитационного поля Земли, например напряженности гравитационного поля, или, что то же, ускорения свободного падения
Наверх