Импульсный гистерезисный микроэлектродвигатель

 

Использование: в электротехнике, в электрических машинах, в приборостроении, устройствах автоматики. Сущность изобретения: импульсный гистерезисный микроэлектродвигатель содержит статор 1 с магнитопроводом 2, обмоткой 3 возбуждения, обмоткой 4 управления, потоковыравнивающей втулкой 5 и ротор 8. Пазы обмотки возбуждения расположены диаметрально противоположно пазам обмотки управления. Потоковыравнивающая втулка размещена концентрично ротору с зазором и имеет выступы 6. Соотношение толщины стенки 7 втулки и стенки выступа втулки составляет 0,2 - 0,5. Протяженность стенки 7 втулки составляет 90 - 120 эл.град. Количество выступов втулки равно числу полюсов двигателя. Ротор выполнен из гистерезисного материала. 2 ил.

Изобретение относится к электрическим машинам, в частности к гистерезисным электродвигателям с импульсным питанием, и может быть использовано в приборостроении для устройств автоматики.

Известны гистерезисные электродвигатели с вращающимся полем, в которых применяется потоковыравнивающая втулка [1]. Они содержат статор с m-фазной обмоткой, подключаемой к источнику m-фазного тока, и ротор из гистерезисного материала. На статоре над ротором закреплена потоковыравнивающая втулка, представляющая собой металлический магнитомягкий тонкостенный полый цилиндр, способствующий увеличению момента вращения двигателя. В аппаратуре систем управления и регулирования эти двигатели выполняются в миниатюрном исполнении. При этом применяют диаметральные сосредоточенные фазные обмотки (статор имеет по одному пазу с обмоткой на полюс и фазу, т.е. q = 1).

Недостатком таких двигателей является пониженный уровень двигательного момента из-за неиспользования третьей пространственной гармоники намагничивающей силы (НС) обмотки каждой фазы.

Известен также импульсный гистерезисный электродвигатель [2], который принят за прототип. Он содержит статор с магнитопроводом и обмотками возбуждения и управления и ротор из гистерезисного материала. Магнитопровод статора выполнен из двух частей, на одной из которых, выполненной в виде кольца с двумя отверстиями, установлена обмотка возбуждения, а на другой, выполненной в виде скобы с полюсными наконечниками, установлена обмотка управления, причем полюсные наконечники скобы установлены по оси обмотки возбуждения. Малогабаритное исполнение двигателя обуславливает уменьшение количества пазов обмотки возбуждения до двух на пару полюсов и изготовление этой обмотки в виде диаметральной сосредоточенной. Обмотку возбуждения подключают к источнику постоянного тока, а обмотку управления - к источнику однополярных узких импульсов. При подаче этих импульсов тока ротор перемагничивается так, что ось его остаточной намагниченности поворачивается по телу ротора в одну сторону к оси обмотки управления (к оси полюсных наконечников). В паузах между узкими импульсами обмотка возбуждения взаимодействует с намагниченным ротором, в результате чего ротор поворачивается в другую сторону так, чтобы совместить ось остаточной намагниченности с осью обмотки возбуждения.

Недостаток данного электродвигателя в малогабаритном исполнении заключается в наличии пульсационных гистерезисных потерь мощности из-за зубчатости статора, а также в пониженном вращающем моменте из-за неиспользования третьей гармоники НС обмотки возбуждения, что обуславливает недостаточно высокий КПД.

Цель изобретения - повышение КПД.

Цель достигается тем, что в импульсном гистерезисном микроэлектродвигателе, содержащем статор с магнитопроводом, обмоткой управления и обмоткой возбуждения и ротор из гистерезисного материала, диаметрально противоположно пазам обмотки возбуждения выполнены пазы, в которых размещена обмотка управления, а концентрично ротору с зазором относительно него установлена потоковыравнивающая втулка с выступами, наружная поверхность которых примыкает к внутренней поверхности статора в зоне расположения пазов обмотки управления, причем соотношение толщины стенки втулки и стенки выступа втулки составляет 0,2-0,5, протяженность стенок втулки в зоне отсутствия выступов составляет 90-120 эл.град., а количество выступов втулки равно числу полюсов двигателя.

Благодаря потоковыравнивающей втулке воздушный зазор над ротором оказывается постоянным и пульсаций напряженности (сопровождающихся гистерезисными потерями) в элементах ротора при его повороте практически не происходит. Кроме того, увеличивается момент двигателя в связи с увеличением в зазоре первой пространственной гармоники магнитной индукции из-за (возникающей в результате насыщения втулки) неравномерной по углу проводимости для третьей гармоники НС обмотки возбуждения.

На фиг. 1 изображен импульсный гистерезисный микроэлектродвигатель; на фиг. 2 приведены зависимости параметров микроэлектродвигателя по углу расточки статора, где F - распределение НС обмотки возбуждения, F1 - первая пространственная гармоника НС, F3 - третья пространственная гармоника НС, 1 - распределение проводимости для первой гармоники НС, B - распределение проводимости для высших гармоник НС, В1 - распределение индукции от действия первой гармоники НС, В3 - распределение индукции от действия третьей гармоники НС, В1доп - распределение дополнительной первой гармоники индукции от действия третьей гармоники НС.

Импульсный гистерезисный микроэлектродвигатель (фиг. 1) содержит статор 1, имеющий магнитопровод 2 из магнитомягкого материала, диаметральную сосредоточенную обмотку 3 возбуждения (число пазов обмотки возбуждения на полюс равно единице), обмотку 4 управления, размещенную в пазах, диаметрально (ортогонально) противоположных пазам обмотки 3 возбуждения, и потоковыравнивающую втулку 5. Потоковыравнивающая втулка выполняется из материала с невысокой индукцией насыщения и большой начальной проницаемостью (например, из пермаллоя) и представляет собой полый цилиндр, гладкий изнутри, имеющий два внешних выступа 6 (расположенные под пазами обмотки 4 управления) и две тонкие стенки 7. Выступы 6 вплотную прилегают к зубцам магнитопровода 2. Толщина стенок 7 выбирается минимально возможной из расчета обеспечения механической жесткости конструкции, причем стенка 7 имеет магнитное насыщение при величине НС возбуждения, равной 0,7...0,9 от номинальной.

Стенки выступов 6 насыщаются при действии НС управления величиной 0,7.. . 0,9 от номинальной НС управления, так что соотношение толщины стенки 7 втулки и стенки выступа 6 приблизительно равно отношению НС возбуждения к НС управления, что реально составляет 0,2...0,5. Количество выступов 6 (а также тонких стенок 7) - К равно числу полюсов двигателя 2Р (на фиг. 1 2Р = 2 и К = 2). Протяженность стенок 7 (в зоне отсутствия выступов) составляет 90...120 эл. град.

Внутри втулки 5 концентрично ее внутреннему диаметру и соосно зубцам магнитопровода 2 располагается ротор 8, выполненный из гистерезисного материала.

Обмотку 3 возбуждения подключают к источнику постоянного тока, а обмотку 4 управления - к источнику однополярных узких импульсов (источники на фигурах не показаны).

После подачи питания на обмотки статора 1 и прохождения узкого импульса тока в обмотке 4 управления гистрезисный ротор 8 намагничивается так, что ось его намагничивания занимает некоторое промежуточное положение между осями НС обмоток 3 и 4 ближе к оси обмотки 4 управления. Возникает вращающий момент, поворачивающий (в паузе между импульсами) ротор до совмещения осей его остаточной намагниченности и НС обмотки 3 возбуждения. Повторный импульс тока обмотки 4 управления вновь перемагничивает ротор, ось его намагниченности смещается в первоначальное положение, и вновь наступает рабочий цикл поворота, и т.д.

Во время действия узкого импульса на ротор 8 действует отрицательный момент, стремящийся повернуть его в противоположную основному повороту сторону (до совмещения оси намагниченности ротора с осью результирующей НС двух обмоток). Однако время действия импульса тока мало по сравнению с временем рабочего цикла, и средний момент практически равен моменту рабочего цикла.

По сравнению с прототипом в предложенном микроэлектродвигателе потоковыравнивающая втулка 5 обеспечивает более равномерную по углу проводимость зазора (для первой пространственной гармоники потока возбуждения), что обеспечивает снижение гистерезисных потерь в роторе в рабочем цикле. Кроме того, благодаря выступам 6 втулки 5 проявляется эффект увеличения момента рабочего цикла. Для рассмотрения этого явления обратимся к фиг. 1. Основная часть потока возбуждения (его первой пространственной гармоники) проходит через стенки втулки 5 в зазор и гистерезисный ротор (на фиг. 1 путь этого потока обозначен пунктиром 9). Другая, незначительная, часть потока возбуждения замыкается вдоль тонкой стенки 7 втулки 5 (путь этого потока рассеяния обозначен пунктиром 10), не попадая в зазор. Участки втулки 5, по которым проходит поток рассеяния, насыщаются этим потоком. Насыщенные участки (вдоль стенок 7) втулки для потоков от высших гармоник НС возбуждения представляют большое магнитное сопротивление, а ненасыщенные участки (вдоль стенок с выступами 6) - малое сопротивление. Поэтому потоки от высших гармоник шунтируются ненасыщенными участками и вблизи этих участков в зазор не проходят. В местах с насыщением проводимость от магнитопровода к ротору наибольшая. Этим условиям проводимости отвечает фиг. 2 б, в.

На фиг. 2б изображено распределение проводимости от статора к ротору по углу для первой гармоники НС - 1(), на фиг. 2в - распределение проводимости для высших гармоник НС - b().

На фиг. 2а показано распределение НС обмотки возбуждения по углу - F( ). Эту НС F( ) можно разложить в ряд Фурье по нечетным гармоникам: F1( ), F3( ), F5( )... На фиг. 2а выделены первая F1( ) и третья F3( ) пространственные гармоники НС возбуждения.

Приближенно считая магнитную проницаемость статора и ротора равной бесконечности, имеют функцию распределения индукции в зазоре в рабочем цикле В( ) = F1( ) 1()+[F3()+F5()+ F7()+...]b()=B1()+B3()+ + B5()+B7()+...+Bn()+..., где В1( ) = F1( ) 1() = F1макс coso = =B1макс cos - основная гармоническая составляющая индукции; Bn() = Fn()в() = (-1 cosn в()= = (-1 cos n - - n-я негармоническая составляющая индукции, где n = 3, 5, 7...

При рассмотрении первых двух членов В1( ) и В3( ) видно, что из получившегося несинусоидального распределения В3() можно выделить первую В1доп и высшие пространственные гармоники индукции (на фиг. 2 не показаны).

Таким образом, дополнительно выделенная первая пространственная гармоника (В1доп) складывается с первой основной гармоникой (В1), увеличивая действующую в зазоре магнитную индукцию и соответственно полезный момент по сравнению с прототипом.

Наибольшее значение этого прироста момента может быть получено, когда угол между выступами 6, соответствующий протяженности стенки 7 (угол насыщенного участка нас втулки под пазами обмотки возбуждения равен 120о). В этом случае B1 доп макс= B3() cos d = - cos 3 cosd = B1 макс= 0,137 B1 макс и прирост момента составит соответственно 14%.

Подобного эффекта в двигателях с вращающимся полем и потоковыравнивающей втулкой не наблюдается в связи с тем, что зоны насыщения втулки вращаются синхронно с первой гармоникой индукции и проводимость для высших гармоник НС становится зависимой от времени и частоты вращения поля.

Таким образом, приведенная конструкция импульсного гистерезисного микроэлектродвигателя, включающая потоковыравнивающую втулку с выступами по числу полюсов, позволяет снизить пульсационные гистерезисные потери и увеличить момент, что дает увеличение КПД.

Формула изобретения

ИМПУЛЬСНЫЙ ГИСТЕРЕЗИСНЫЙ МИКРОЭЛЕКТРОДВИГАТЕЛЬ, содержащий статор с магнитопроводом и обмотками возбуждения и управления и ротор из гистерезисного материала, отличающийся тем, что, с целью повышения КПД, диаметрально противоположно пазам обмотки возбуждения выполнены пазы, в которых размещена обмотка управления, а концентрично ротору с зазором относительно него установлена потоковыравнивающая втулка с выступами, наружная поверхность которых примыкает к внутренней поверхности статора в зоне расположения пазов обмотки управления, причем отношение толщины стенки втулки к толщине стенки выступа втулки составляет 0,2 - 0,5, протяженность стенок втулки в зоне отсутствия выступов составляет 90 - 120 эл.град., а количество выступов втулки равно числу полюсов двигателя.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к электротехнике

Изобретение относится к электротехнике и может быть использовано в устройствах звукозаписи, гироскопии и центрифугах

Изобретение относится к электротехнике

Изобретение относится к синхронным гистерезисным электродвигателям

Изобретение относится к газовым центрифугам для разделения газов и изотопных смесей и, в частности, к приводам ультрацентрифуг, используемым для разделения изотопов урана

Изобретение относится к области электротехники и машиностроения и предназначено для использования в машинах и механизмах с частотой вращения преимущественно не более 1000 Гц

Изобретение относится к области электротехники и может быть использовано в пусковом устройстве, предназначенном для включения в однофазную сеть двухфазного гистерезисного электродвигателя

Изобретение относится к области электротехники и может быть использовано для перевозбуждения ротора синхронного гистерезисного двигателя (ГД)

Изобретение относится к электротехнике, в частности к электрическим двигателям переменного тока. Технический результат - повышение КПД. Поверхность комбинированного ротора по периметру магнитопровода покрыта тонким твердым слоем композита толщиной 0,1-0,2 мм, включающего магнитный полупроводник, структура которого состоит из нано- или микрокристаллов, размещенных в диэлектрике. Магнитный полупроводник является ферримагнетиком с шириной запрещенной зоны от 0,1 до 4 эВ, а ширина запрещенной зоны диэлектрика больше 3 эВ. Диэлектрик работает как парамагнетик во время работы ротора при подаче синфазного изменяющегося высокочастотного тока на статор не менее 10 кГц. К комбинированному ротору индукционно подают переменное магнитное поле, полученное в обмотках статора в виде ступенчато аппроксимированной синусоиды тока и напряжения. Магнитное поле, в котором вращается комбинированный ротор, получают посредством преобразователя частоты (инвертора), с образованием на комбинированном роторе импульсного переменного магнитного поля путем высокочастотной инверсии (коммутации) синфазного изменяющегося в трех фазах напряжения на статоре. 14 з.п. ф-лы, 1 ил.
Наверх