Фторфосфатное оптическое стекло

 

Использование: для оптической промышленности. Сущность изобретения: фторфосфатное оптическое стекло содержит, мас.% фосфат алюминия 30 - 45, фосфат бария 0,5 - 5, фторид магния 5 - 10, фторид стронция 0,5 - 12, фторид бария 0,5 - 15, оксид бария 32 - 50, оксид алюминия 0,5 - 2 БФ, оксид кремния 0,2 - 1,75. Стекло может содержать оксид тантала 0,5 - 5 мас.% Кристаллизационная способность за 3 ч при 300 - 800°С 1, nl 1,59548 - 1,61553. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области производства стекла типа фторфосфатный оптический крон с высоким показателем преломления и коэффициентом дисперсии, с увеличенными относительными частными дисперсиями и близким к нулю значением термооптической постоянной W.

Известно оптическое стекло [1] следующего состава, мас.%: P 0,3-4,5, Si 0,2-3,5, Al 7-12, Ca 3,5-17, Sr 5-20, F 42-54, Y 0-8, La 0-9, As 0-3, Sb 0-6, Mg 0-4, Ba 0-24, Li 0-1,5, Na 0-5, K 0-5, W 0-7, О 0-6. Стекло имеет hd = 1,41-1,45, d = 100-90, т.е. имеет низкий показатель преломления. Оптико-механической промышленности требуются стекла с более высоким показателем преломления при относительно большом значении коэффициента дисперсии, имеющих особый ход дисперсии и низкие значения.

Наиболее близким по составу компонентов, технической сущности и достигаемой цели является оптическое стекло [2], содержащее, мас.%: метафосфаты 31-49:Al(PO3)3 13-39, Mg(PO3)2 0-24, Ca(PO3)2 10-20, Ba(PO3)2 5-19, фториды 19-47: MgF2 2-13, SrF2 0-20, BaF2 1-33, AlF3 0-8, YF3 0-8, оксиды 20-42:BaO 10-36, Y2O3 и/или Yb2O3 1,5-12, ZnO 0-6, PbO 0-29, Nb2O5 0-22. Стекло имеет показатель преломления hd = 1,58-1,70 и число Аббе 39-70. Стекло обладает аномальной частной дисперсией на участке спектра d-c. Однако оно не достаточно устойчиво к кристаллизации. По этой причине при варке и выработке традиционными методами возникают технологические трудности.

Цель изобретения - создание фторфосфатного оптического стекла с аномальными частными дисперсиями по всему оптическому спектру при значении показателя преломления более 1,595, с низким значением термооптической постоянной, высокой химической устойчивостью и низкой склонностью к кристаллизации, позволяющей получать крупногабаритные заготовки традиционными методами.

Сущность технического решения заключается в следующем. Фторфосфатное оптическое стекло включает метафосфаты Al(PO3)3, Ba(PO3)2, фториды MgF2, SrF2, BaF2 и оксиды ВаО и Al2O3. В отличие от прототипа оно дополнительно содержит SiO2 при следующем соотношении компонентов, мас.%: Al(PO3)3 30-40, Ba(PO3)2 0,5-5, MgF2 5-10, SrF2 1,5-12, BaF2 0,5-15, BaO 32-50, Al2O3 0,5-2, SiO2 0,20-1,75.

Комбинация компонентов и их количественный состав подобраны экспериментально. Существенным для достижения поставленной цели оказалось как введение нового компонента, так и сочетание с известными, а также вариации предложенных компонентов в составе стекла. Именно предложенное соотношение как использовавшихся ранее компонентов, так и нового (SiO2) позволило значительно снизить склонность стекла к кристаллизации, что позволяет получать крупногабаритные заготовки традиционными методами.

Внедрение данного оптического стекла в промышленное производство позволит получать крупногабаритную оптику, используемую в оптико-механической промышленности для изготовления апохроматов-систем с исправленным вторичным спектром. По сравнению с изготовляемыми в настоящее время апохроматы на основе атермальных стекол не расстраиваются в переменных температурных полях.

Изобретение характеризуется дополнительными существенными признаками. Так, с целью повышения показателя преломления в него может быть введен Та2О5.

В качестве сырьевых компонентов использовались безводные метафосфаты квалификации ОС4 и Х4. Оксид бария вводили через карбонат квалификации ОС4, остальные компоненты - через соответствующие оксиды и фториды квалификации ОС4. Составы стекол представлены в таблице.

Все варки были проведены в платиновых сосудах емкостью 2 л в полупромышленных условиях на высокочастотной установке. На образцах варок были определены оптические и теплофизические свойства, химическая устойчивость и кристаллизационная способность.

Стекло прототип обладает повышенной склонностью к кристаллизации (III степень), что недостаточно для получения из этого стекла крупногабаритных заготовок. Изобретение позволяет получать такие заготовки благодаря низкой кристаллизационной способности.

Формула изобретения

1. ФТОРФОСФАТНОЕ ОПТИЧЕСКОЕ СТЕКЛО, включающее Al(PO3)3, Ba(PO3)2, MgF2, SrF2, BaF2, BaO и Al2O3, отличающееся тем, что оно дополнительно содержит SiO2 при следующем соотношении компонентов, мас.%: Al(PO3)3 - 30 - 45 Ba(PO3)2 - 0,5 - 5 MgF2 - 5 - 10 SrF2 - 1,5 - 12 BaF2 - 0,5 - 15 BaO - 32 - 50 Al2O3 - 0,5 - 2 SiO2 - 0,20 - 1,75
2. Стекло по п.1, отличающееся тем, что оно дополнительно содержит Ta2O5 0,5 - 5 мас.%.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Стекло // 2017708
Изобретение относится к фторфосфатному стеклу с пониженным коэффициентом линейного термического расширения и с низкой температурой размягчения, которое может быть использовано в волоконной оптике при производстве оболочки для световодов, работающих в ИК-области спектра

Стекло // 2017694
Изобретение относится к фторфосфатному стеклу с низкой температурой размягчения, которое может быть использовано в волоконной оптике при производстве оболочки световодов из фторцирконатных стекол, работающих в ИК-области спектра

Изобретение относится к оптическим стеклам, созданным на базе фторсодержащих стекол, используемых для изготовления оболочек оптических световодов, для заделки торцов световодов

Стекло // 2016856
Изобретение относится к составам стекол, предназначенных для широкого применения при изготовлении изделий оптического, электровакуумного и другого назначения

Изобретение относится к составам оптических стекол, которые могут быть использованы для изготовления светофильтров, поглощающих инфракрасное (ИК) излучение в области длин волн от 800 нм до 2,5 мкм

Изобретение относится к оптическому материаловедению, а именно к составам стекол для градиентных оптических элементов, и може быть использовано в оптико-механической промышленности для изготовления элементов градиентной и интегральной оптики
Наверх