Способ определения особой фазы при замыкании на землю линии электропередачи

 

Изобретение относится к релейной защите и автоматике и может быть применено в дистанционной защите линий электропередачи, определителях места повреждения, избирателях поврежденных фаз. Способ основан на разграничении 120 - градусных угловых зон, привязанных к токам обратной последовательности, в которые может попасть вектор тока нулевой последовательности. Задача решается минимальным числом операций умножения. Для этого определяются реактивные мощности сигналов, пропорциональных токам обратной и нулевой последовательности, и дальнейшие операции выполняются с реактивными мощностями - вещественными сигналами. Упрощение достигается тем, что фазовые сдвиги заменяются суммированием реактивных мощностей, а угловые зоны выявляются путем анализа знаков суммарных реактивных мощностей. 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к электротехнике, а именно к релейной защите и автоматике линий электропередачи, и может быть использовано в дистанционной защите, избирателях поврежденных фаз и определителях места повреждения.

Способ определения особой фазы поврежденной линии электропередачи входит в качестве важнейшей составной части в способы выбора поврежденных фаз, способы определения зоны повреждения, способы определения места повреждения [1-3] . Для поиска особой фазы используют симметричные составляющие напряжений и токов, беря их в различных комбинациях. Привлекается также информация о доаварийном режиме линии электропередачи [3].

Наибольшей простотой отличается способ, основанный на сравнении фаз токов нулевой и обратной последовательности. Как показали исследования, ток нулевой последовательности может опережать ток обратной последовательности особой фазы не более чем на 105о и отставать от него не более чем на 15о [4] . Известный способ определения особой фазы заключается в поочередной подаче токов обратной последовательности и тока нулевой последовательности на фазочувствительную схему с угловой зоной 120о и граничными углами (-105о) и (+15о) [4]. Но такой способ сложен для реализации на микропроцессорной технике, так как предполагает определение углов между токами обратной и нулевой последовательности.

Цель изобретения заключается в таком упрощении способа, которое полностью учитывает перспективу реализации на современной элементной базе.

На фиг. 1 приведена векторная диаграмма токов обратной последовательности как основных сигналов, а также суммарных токов; на фиг.2 приведена диаграмма токов при особой фазе А; на фиг.3 приведена структурная схема, реализующая предлагаемый способ; на фиг.4 - ее модификация на основе однофазного фильтра обратной последовательности. Правила выбора особой фазы сведены в таблицу.

Структурная схема состоит из фильтра 1 обратной последовательности, в общем случае трехфазного, совмещенного с фильтрами ортогональных составляющих, отдельного фильтра 2 ортогональных составляющих, датчиков 3-5 реактивной мощности, делителей 6-8, сумматоров 9-11, инверторов 12-14, логических элементов И 15-17, выходы которых несут информацию об особой фазе.

Иная модификация структурной схемы содержит фильтр 18 обратной последовательности с одним выходом, соответствующим фазе А, датчик 19 активной мощности, масштабирующие блоки 20, 21, сумматоры 22, 23 и инвертор 24. По предлагаемому способу обработке подлежат четырех входных тока - фазные i, = А, В, С и нулевой последовательности iо. Они преобразуются (фильтрами 1 и 2) в комплексы токов обратной последовательности и тока нулевой последовательности . Каждый комплексный сигнал задается двумя вещественными - ортогональными составляющими: = I,Re + jI,Im , = Io,Re+ jIo,Im. Здесь с помощью датчиков 3-5 определяют взаимную реактивную мощность, предстающую в форме сигналов = Im() = - I,ReI0,Im+ I,ImI0,Re, (1) а с помощью сумматоров 9-11 и делителей 6-8 формируют суммарные сигналы =++1/K, (2) где +1 - обозначение опережающей фазы.

Коэффициент К делителей 6-8 определяется из условия arg- arg(+ /K) = 15 что с достаточной точностью обеспечивается значением К = 4.

Суммарные векторы = + /K служат границами трех угловых зон, выявляющих особую фазу, если в них попадает ток нулевой последовательности (фиг. 1, 2). Иначе говоря, если вектор оказывается между векторами и , где -1 - обоз- начение отстающей фазы, то этот признак является свидетельством того, что есть особая фаза (фиг.2).

Посмотрим, как данное свойство отражается на сигналах . Выражение (2), определяющее сигнал , эквивалентнo взаимной реактивной мощности комплексов и = Im() + Im() = Im[(+ /K)] = Im[]. (3) Как видно из диаграмм по фиг.1 и 2, только при особой фазе = углы = и -1=-1 удовлетворяют условиям sin < 0, sin -1 > 0. (4) Из (3) и (4) вытекает закономерность, отраженная в таблице. Oсобой фазой будет та фаза , у которой свой сигнал отрицателен при условии, что сигнал -1, отстающей фазы положителен: < 0, (5) -1,> 0 (6) Знак оставшегося сигнала +1,, никакой роли уже не играет, так как при выполнении условий (5), (6) фазу +1 невозможно спутать с особой. Если +1, > 0, то для нее не соблюдается первое условие выбора особой фазы. Если же +1, < 0, то первое условие выполняется, но не выполняется второе - то, что сигнал фазы, отстающей относительно особой, положителен.

Отсюда следует вывод, что, располагая тремя сигналами (2), достаточно проанализировать их знаки и выявить фазу =, отвечающую условиям (5), (6). Для этого с помощью инвертора 12-14 и элементов И 15-17 попарно сравнивают знаки трех суммарных сигналов, причем в каждую пару сигнал входит после инвертирования, а сигнал отстающей фазы -1,- непосредственно. Такое сравнение обнаружит ту пару, которая отвечает обоим условиям (5), (6). Поскольку, как было показано, две другие пары сигналов этим условиям удовлетворять уже не могут принципиально, то из трех элементов И сработает только один. Его выходной сигнал укажет особую фазу.

Процедура (1) требует для своей реализации шести операций умножения, совершаемых внутри блоков 3-5. Имеется возможность сократить число умножений до четырех. Поскольку
+ + = 0, то и +B+= 0, следовательно, третий из сигналов может быть определен по двум предыдущим
с=-(A+В). То же свойство распространяется и на суммарные сигналы
c=-(A+В).

Выше предполагалось, что способ реализуется на основе трехфазного фильтра 1 обратной последовательности, т.е. сигналы формируются автономно. Если же имеется более простой фильтр 18 с единственным выходным сигналом , то можно обойтись без формирования второго сигнала и последующего формирования сигнала B как взаимной реактивной мощности и . Проще сформировать с помощью датчика 19 активной мощности взаимную активную мощность сигналов и
= Re() = IAReIORe+IAImIOIm, а затем воспользоваться следующим алгоритмом формирования двух других сигналов
B,C= I e j120 = - A A, реализуемым структурной схемой по фиг.4. Данная модификация способа выбора особой фазы, несмотря на ограниченные возможности фильтра обратной последовательности, требует для своей реализации только пяти операций умножения.

Обнаружен таким образом способ определения особой фазы при замыкании на землю линии электропередачи, обходящийся минимальным числом операций умножения и, следовательно, наиболее просто реализуемый на микропроцессорной технике.


Формула изобретения

1. СПОСОБ ОПРЕДЕЛЕНИЯ ОСОБОЙ ФАЗЫ ПРИ ЗАМЫКАНИИ НА ЗЕМЛЮ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ путем формирования опорного сигнала, пропорционального току нулевой последовательности, трех основных сигналов, пропорциональных токам обратной последовательности разных фаз линии электропередачи, определения угловой зоны опорного сигнала относительно основных сигналов, отличающийся тем, что определяют три взаимные реактивные мощности между каждым из основных и опорным сигналом, преобразуют реактивные мощности и три дополнительных сигнала, суммируют каждый из дополнительных сигналов с частью дополнительного сигнала опережающей фазы, формируя тем самым три суммарных сигнала, выявляют пару суммарных сигналов, в которой знак суммарного сигнала опережающей фазы положителен, а отстающий - отрицателен, и принимают в качестве особой фазы ту, которой соответствует указанный отстающий сигнал.

2. Способ по п.1, отличающийся тем, что каждый суммарный сигнал формируют в виде суммы дополнительного сигнала соответствующей фазы и четвертой части дополнительного сигнала опережающей фазы.

3. Способ по пп. 1 и 2, отличающийся тем, что третий суммарный сигнал формируют как отрицательную сумму первого и второго суммарных сигналов.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к электротехнике и может быть иснользовано в устройствах релейной зани1ты

Изобретение относится к электротехнике, в частности к релейной защите от нессимметричных режимов

Изобретение относится к электротехнике , в частности к релейной защите и линейкой автоматике, и может быть использовано в устройствах однофазного автоматического повторного включения (ОАПВ)

Изобретение относится к электротехнике , в частности к релейной защите и линейной автоматике, и может быть использовано в устройствах однофазного автоматического повторного включения (ОАПВ)

Изобретение относится к электроэнергетике и предназначено для использования в качестве релейной защиты сборных шин электрических станций и подстанций

Изобретение относится к защите индукционных нагревательных установок, работающих на токах промышленной частоты и предназначенных для термообработки железобетонных и бетонных изделий, а также сушильных установок

Изобретение относится к релейной защите и может быть использовано для защиты шин и элементов, к ним подключенных

Изобретение относится к области электротехники

Изобретение относится к электротехнике , в частности к релейной защите и автоматике , и может быть использовано, например , в устройствах однофазного автоматического повторного включения

Изобретение относится к области измерения и средствам защиты человека от токов утечки на корпус подвижного состава, питаемого постоянным током от двухпроводной контактной сети, в частности к устройствам измерения и сигнализации токов утечки на корпус троллейбуса, а также к устройствам защиты пассажиров от поражения токами утечки
Наверх