Способ определения показателя преломления клиновидных образцов

 

Способ определения показателя преломления клиновидных образцов. Сущность изобретения: направляют через диафрагму параллельный пучок монохроматического света нормально на первую грань образца, формируют в проходящем свете первое изображение диафрагмы, второе - при двукратном отражении лучей внутри образца, третье - при прохождении света через воздух вне образца, измеряют расстояния 1 от первого изображения до третьего изображения диафрагмы и расстояние 2 от второго изображения диафрагмы до третьего, а показатель преломления n образца определяют из соотношения . 2 ил.

Изобретение относится к области измерения оптических параметров веществ, в частности к угловым способам измерения показателя преломления клиновидных прозрачных объектов, и может найти применение в различных областях народного хозяйства, где необходимо знание точного значения показателя преломления оптических материалов, в частности, в химии и минералогии.

Известен способ определения показателя преломления клиновидных образцов [1], заключающийся в том, что направляют параллельный пучок минохроматического света нормально на первую грань клина, с помощью коллиматора гониометра получают первое изображение щели коллиматора в проходящем свете, поворачивают исследуемый образец на 180о, получают второе изображение в отраженном свете от второй грани клина, измеряют угловое расстояние между ними, измеряют угол клиновидного образца, а показатель преломления определяют из соотношения n = sin( + i)/sin , где - угол клина; i - угловое расстояние между первым и вторым изображением диафрагмы.

Недостатком данного способа является необходимость измерения угла клина, поворота исследуемого образца на 180о в процессе измерений.

Наиболее близким к изобретению является способ определения показателя преломления клиновидных образцов [2], в котором образец освещают монохроматическим светом через диафрагму и формируют четыре изображения диафрагмы с помощью зеркальной поверхности. Формирование двух независимых пар изображений требует проведения юстировки, состоящей из двух этапов: установки зеркала строго нормально к падающему излучению и установки клина таким образом, чтобы первая пара изображений располагалась внутри второй пары изображений.

Целью изобретения является упрощение способа.

Поставленная цель достигается тем, что в способе определения показателя преломления клиновидных образцов, заключающемся в том, что освещают образец монохроматическим светом через диафрагму и формируют первое изображение диафрагмы при прохождении излучения мимо образца, формируют в проходящем свете дополнительные изображения диафрагмы, одно из которых соответствует однократному прохождению излучения через образец, а второе - трехкратному прохождению излучения через образец, измеряют расстояния 1 от первого изображения до первого дополнительного изображения диафрагмы, и расстояние 2 - от первого до второго дополнительного изображения диафрагмы, а показатель преломления n определяют из соотношения n = .

На фиг. 1 представлена схема устройства, реализующего способ; на фиг. 2 - ход лучей в клиновидном образце.

Устройство включает в себя источник 1 света, установленный по ходу луча конденсор 2, в фокусе которого расположена входная диафрагма 3 и последовательно размещенные за ней объектив 4, исследуемый клиновидный образец 5, выходной объектив 6 и регистрирующее устройство 7.

Способ осуществляется следующим образом.

Клиновидный образец 5 освещают параллельным пучком монохроматического света от источника 1, первую грань клина располагают нормально к падающему излучению, наблюдают три коллимационных изображения входной диафрагмы 3, измеряют расстояния 1 и 2 между соответствующими парами коллимационных изображений (фиг. 2) и рассчитывают n по формуле n = .

Известно, что в приближении малых углов, угол отклонения лучей, прошедших через клин, связан с углом клина 01 = n , где - угол клина, n - показатель преломления клиновидного образца.

Угол между лучом, прошедшим через воздух мимо клина, и лучом, прошедшим через клин и соответственно преломленным им, 1 = n - . Часть света, вошедшего в клин, претерпевает двойное отражение (от второй, затем от первой по ходу луча грани клина) в клине и выходит, преломившись на второй грани клина под углом 02 = 3 n, образуя третье изображение диафрагмы. Угол между третьим изображением и первым (только через воздух) запишется в виде 2 = 3 n - .

Таким образом, одновременное получение трех изображений и измерение расстояний 1 и 2 между ними позволяет исключить операции по измерению угла клина и его поворота. Окончательно показатель преломления рассчитывается по формуле n = .

В конкретном варианте определения показателя преломления клиновидного образца в качестве монохроматического источника света использовалась ртутная лампа с длиной волны излучения 5461 , расстояния 1 и 2 между коллимационными изображениями входной диафрагмы измерялись в фокусе выходного объектива с помощью окуляр-микрометра и стандартного автоколлиматора. В результате расчетов средний полученный результат n = 1,5183, что соответствует стеклу К8 с точностью до единицы пятого знака после запятой.

Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ КЛИНОВИДНЫХ ОБРАЗЦОВ, включающий освещение образца монохроматическим светом через диафрагму и формирование первого изображения диафрагмы при прохождении излучения мимо образца, отличающийся тем, что, с целью упрощения способа, формируют в проходящем свете дополнительные изображения диафрагмы, первое из которых соответствует однократному прохождению излучения через образец, в второе - трехкратному прохождению излучения через образец, измеряют расстояния 1 от первого изображения до первого дополнительного изображения диафрагмы и расстояние 2 от первого до второго дополнительного изображения диафрагмы, а показатель преломления n образца определяют из соотношения

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к атмосферной оптике и может быть использовано при решении задачи фильтрации (улучшения) изображения поверхности астрономических и воздушно-космических объектов, наблюдаемых через турбулентную атмосферу, а также в астрономии, геодезии и картографии

Изобретение относится к измерительной технике и может быть использовано при точных угловых измерениях в атмосфере

Изобретение относится к измерительной технике и может быть применено для измерения показателя преломления жидкостей , при химико-биологических исследованиях , анализах горючего

Изобретение относится к методам определения характеристик вещества, а именно к измерению показателя преломления твердых и жидких веществ

Изобретение относится к медицине, в частности к лабораторному исследованию плазмы крови с целью диагностики степени тяжести синдрома эндогенной интоксикации (СЭИ) у детей с соматической, хирургической, инфекционной патологией, особенно в клиниках новорожденных и недоношенных

Изобретение относится к области контроля технологических параметров многокомпонентных растворов, а именно концентрации растворов

Изобретение относится к измерительной технике, а точнее к дистанционным измерениям, и может быть использовано при проектировании лазерных информационных систем и систем доставки лазерного излучения

Изобретение относится к измерению оптических характеристик веществ и может быть использовано для оптического детектирования вещественных компонентов

Изобретение относится к области аналитической техники, а именно к способам и средствам оценки детонационной стойкости автомобильных бензинов

Изобретение относится к области оптики, а именно к определению коэффициента нелинейности показателя преломления оптических сред

Изобретение относится к оптической диагностике пространственных динамических процессов, протекающих в прозрачных многофазных пористых и зернистых средах, и может быть использовано в химической и нефтяной промышленности, инженерной экологии

Изобретение относится к измерительной технике и может быть использовано при точных измерениях углов в атмосфере
Наверх